Fang Hao, Yang Yuxiao
Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, United States.
Ministry of Education (MOE) Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou, Zhejiang, China.
Front Comput Neurosci. 2023 Mar 6;17:1119685. doi: 10.3389/fncom.2023.1119685. eCollection 2023.
Deep brain stimulation (DBS) is a promising therapy for treatment-resistant major depressive disorder (MDD). MDD involves the dysfunction of a brain network that can exhibit complex nonlinear neural dynamics in multiple frequency bands. However, current open-loop and responsive DBS methods cannot track the complex multiband neural dynamics in MDD, leading to imprecise regulation of symptoms, variable treatment effects among patients, and high battery power consumption.
Here, we develop a closed-loop brain-computer interface (BCI) system of predictive neuromodulation for treating MDD. We first use a biophysically plausible ventral anterior cingulate cortex (vACC)-dorsolateral prefrontal cortex (dlPFC) neural mass model of MDD to simulate nonlinear and multiband neural dynamics in response to DBS. We then use offline system identification to build a dynamic model that predicts the DBS effect on neural activity. We next use the offline identified model to design an online BCI system of predictive neuromodulation. The online BCI system consists of a dynamic brain state estimator and a model predictive controller. The brain state estimator estimates the MDD brain state from the history of neural activity and previously delivered DBS patterns. The predictive controller takes the estimated MDD brain state as the feedback signal and optimally adjusts DBS to regulate the MDD neural dynamics to therapeutic targets. We use the vACC-dlPFC neural mass model as a simulation testbed to test the BCI system and compare it with state-of-the-art open-loop and responsive DBS treatments of MDD.
We demonstrate that our dynamic model accurately predicts nonlinear and multiband neural activity. Consequently, the predictive neuromodulation system accurately regulates the neural dynamics in MDD, resulting in significantly smaller control errors and lower DBS battery power consumption than open-loop and responsive DBS.
Our results have implications for developing future precisely-tailored clinical closed-loop DBS treatments for MDD.
深部脑刺激(DBS)是一种用于治疗难治性重度抑郁症(MDD)的有前景的疗法。MDD涉及一个大脑网络的功能障碍,该网络在多个频段可表现出复杂的非线性神经动力学。然而,当前的开环和响应性DBS方法无法追踪MDD中的复杂多频段神经动力学,导致症状调节不精确、患者间治疗效果可变以及高电池功耗。
在此,我们开发了一种用于治疗MDD的预测性神经调节闭环脑机接口(BCI)系统。我们首先使用一个具有生物物理合理性的MDD腹侧前扣带回皮质(vACC)-背外侧前额叶皮质(dlPFC)神经团模型来模拟对DBS响应的非线性和多频段神经动力学。然后我们使用离线系统识别来构建一个预测DBS对神经活动影响的动态模型。接下来,我们使用离线识别的模型来设计一个预测性神经调节在线BCI系统。该在线BCI系统由一个动态脑状态估计器和一个模型预测控制器组成。脑状态估计器根据神经活动历史和先前施加的DBS模式来估计MDD脑状态。预测控制器将估计的MDD脑状态作为反馈信号,并最优地调整DBS以将MDD神经动力学调节至治疗靶点。我们使用vACC-dlPFC神经团模型作为模拟测试平台来测试BCI系统,并将其与MDD的现有开环和响应性DBS治疗方法进行比较。
我们证明我们的动态模型能够准确预测非线性和多频段神经活动。因此,预测性神经调节系统能够准确调节MDD中的神经动力学,与开环和响应性DBS相比,控制误差显著更小,DBS电池功耗更低。
我们的结果对未来开发针对MDD的精确定制临床闭环DBS治疗具有启示意义。