Suppr超能文献

自适应跟踪人类脑电网络动力学。

Adaptive tracking of human ECoG network dynamics.

机构信息

Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States of America.

Equal contribution.

出版信息

J Neural Eng. 2021 Feb 24;18(1):016011. doi: 10.1088/1741-2552/abae42.

Abstract

OBJECTIVE

Extracting and modeling the low-dimensional dynamics of multi-site electrocorticogram (ECoG) network activity is important in studying brain functions and dysfunctions and for developing translational neurotechnologies. Dynamic latent state models can be used to describe the ECoG network dynamics with low-dimensional latent states. But so far, non-stationarity of ECoG network dynamics has largely not been addressed in these latent state models. Such non-stationarity can happen due to a change in brain state or recording instability over time. A critical question is whether adaptive tracking of ECoG network dynamics can lead to further dimensionality reduction and more parsimonious and precise modeling. This question is largely unaddressed.

APPROACH

We investigate this question by employing an adaptive linear state-space model for ECoG network activity constructed from ECoG power feature time-series over tens of hours from 10 human subjects with epilepsy. We study how adaptive modeling affects the prediction and dimensionality reduction for ECoG network dynamics compared with prior non-adaptive models, which do not track non-stationarity.

MAIN RESULTS

Across the 10 subjects, adaptive modeling significantly improved the prediction of ECoG network dynamics compared with non-adaptive modeling, especially for lower latent state dimensions. Also, compared with non-adaptive modeling, adaptive modeling allowed for additional dimensionality reduction without degrading prediction performance. Finally, these results suggested that ECoG network dynamics over our recording periods exhibit non-stationarity, which can be tracked with adaptive modeling.

SIGNIFICANCE

These results have important implications for studying low-dimensional neural representations using ECoG, and for developing future adaptive neurotechnologies for more precise decoding and modulation of brain states in neurological and neuropsychiatric disorders.

摘要

目的

提取和建模多部位脑电皮层电图 (ECoG) 网络活动的低维动力学对于研究大脑功能和功能障碍以及开发转化神经技术非常重要。动态潜在状态模型可用于描述具有低维潜在状态的 ECoG 网络动力学。但到目前为止,这些潜在状态模型在很大程度上没有解决 ECoG 网络动力学的非平稳性。这种非平稳性可能由于大脑状态的变化或随时间记录的不稳定性而发生。一个关键问题是,ECoG 网络动力学的自适应跟踪是否可以进一步降低维度并实现更简洁、更精确的建模。这个问题在很大程度上尚未得到解决。

方法

我们通过使用自适应线性状态空间模型来研究这个问题,该模型是根据 10 名癫痫患者数十小时的 ECoG 功率特征时间序列构建的,用于 ECoG 网络活动。我们研究了与不跟踪非平稳性的先前非自适应模型相比,自适应建模如何影响 ECoG 网络动力学的预测和降维。

主要结果

在 10 名受试者中,与非自适应建模相比,自适应建模显著提高了 ECoG 网络动力学的预测能力,尤其是在较低的潜在状态维度上。此外,与非自适应建模相比,自适应建模允许在不降低预测性能的情况下进行额外的降维。最后,这些结果表明,在我们的记录期间,ECoG 网络动力学表现出非平稳性,可通过自适应建模进行跟踪。

意义

这些结果对于使用 ECoG 研究低维神经表示以及开发未来的自适应神经技术以更精确地解码和调节神经和神经精神障碍中的大脑状态具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验