Suppr超能文献

环境盐化过程:检测、影响与解决方案。

Environmental salinization processes: Detection, implications & solutions.

机构信息

The University of Zagreb, Faculty of Agriculture, Svetosimunska c. 25, Croatia.

The University of Western Australia, UWA School of Agriculture and Environment, Stirling Highway 35, Perth, W. Australia, Australia; Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, Split, Croatia.

出版信息

Sci Total Environ. 2021 Feb 1;754:142432. doi: 10.1016/j.scitotenv.2020.142432. Epub 2020 Sep 21.

Abstract

A great portion of Earth's freshwater and land resources are salt-affected and thus have restricted use or may become unsuitable for most human activities. Some of the recent scenarios warn that environmental salinization processes will continue to be exacerbated due to global climate change. The most relevant implications and side-effects in ecosystems under excessive salinity are destructive and long lasting (e.g. soil dispersion, water/soil hypersalinity, desertification, ruined biodiversity), often with non-feasible on site remediation, especially at larger scales. Agro-ecosystems are very sensitive to salinization; after a certain threshold is reached, yields and food quality start to deteriorate sharply. Additionally, salinity often coincides with numerous other environmental constrains (drought, waterlogging, pollution, acidity, nutrient deficiency, etc.) that progressively aggravate the threat to food security and general ecosystem resilience. Some well-proven, widely-used and cost-effective traditional ameliorative strategies (e.g. conservation agriculture, application of natural conditioners) help against salinity and other constraints, especially in developing countries. Remotely-sensed and integrated data of salt-affected areas combined with in situ and lab-based observations have never been so easy and rapid to acquire, precise and applicable on huge scales, representing a valuable tool for policy-makers and other stakeholders in implementing targeted measures to control and prevent ecosystem degradation (top-to-bottom approach). Continued progress in biotechnology and ecoengineering offers some of the most advanced and effective solutions against salinity (e.g. nanomaterials, marker-assisted breeding, genome editing, plant-microbial associations), albeit many knowledge gaps and ethical frontiers remain to be overcome before a successful transfer of these potential solutions to the industrial-scale food production can be effective.

摘要

地球的大部分淡水资源和土地资源都受到盐分的影响,因此其用途受到限制,或者可能不适合大多数人类活动。一些最近的情况警告说,由于全球气候变化,环境盐化过程将继续加剧。在过度盐化的生态系统中,最相关的影响和副作用是破坏性的且持久的(例如土壤分散、水/土过盐度、荒漠化、生物多样性破坏),通常无法在现场进行修复,尤其是在较大的规模上。农业生态系统对盐化非常敏感;一旦达到某个阈值,产量和食品质量就会开始急剧恶化。此外,盐分通常与许多其他环境限制因素(干旱、水涝、污染、酸度、养分缺乏等)同时出现,这些因素会逐渐加剧对粮食安全和一般生态系统恢复力的威胁。一些经过充分验证、广泛使用且具有成本效益的传统改良策略(例如保护性农业、天然调节剂的应用)有助于抵御盐分和其他限制因素,特别是在发展中国家。盐渍地区的遥感和综合数据与现场和实验室观测相结合,现在已经变得非常容易和快速获取,并且在大规模应用时具有高精度和实用性,为决策者和其他利益相关者实施有针对性的措施以控制和防止生态系统退化提供了有价值的工具(自上而下的方法)。生物技术和生态工程的持续进步为盐分提供了一些最先进和有效的解决方案(例如纳米材料、标记辅助育种、基因组编辑、植物-微生物联合),尽管在成功将这些潜在解决方案转移到工业规模的粮食生产之前,仍有许多知识差距和伦理前沿需要克服。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验