Massange-Sánchez Julio A, Casados-Vázquez Luz E, Juarez-Colunga Sheila, Sawers Ruairidh J H, Tiessen Axel
Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato 36821, Mexico.
Unidad de Biotecnología Vegetal, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ) Subsede Zapopan, Guadalajara 44270, Mexico.
Plants (Basel). 2020 Nov 24;9(12):1639. doi: 10.3390/plants9121639.
Phosphoglycerate kinase (PGK, E.C. 2.7.2.3) interconverts ADP + 1,3-bisphospho-glycerate (1,3-bPGA) to ATP + 3-phosphoglycerate (3PGA). While most bacteria have a single gene and mammals possess two copies, plant genomes contain three or more genes. In this study, we identified five genes in the var. B73 genome, predicted to encode proteins targeted to different subcellular compartments: , and (chloroplast), (cytosol), and (nucleus). The expression of was highest in non-photosynthetic tissues (roots and cobs), where PGK activity was also greatest, consistent with a function in glycolysis. Green tissues (leaf blade and husk leaf) showed intermediate levels of PGK activity, and predominantly expressed and , suggesting involvement in photosynthetic metabolism. was weakly expressed and was not detected in any tissue. Phylogenetic analysis showed that the photosynthetic and glycolytic isozymes of plants clustered together, but were distinct from PGKs of animals, fungi, protozoa, and bacteria, indicating that photosynthetic and glycolytic isozymes of plants diversified after the divergence of the plant lineage from other groups. These results show the distinct role of each PGK in maize and provide the basis for future studies into the regulation and function of this key enzyme.
磷酸甘油酸激酶(PGK,E.C. 2.7.2.3)催化ADP与1,3-二磷酸甘油酸(1,3-bPGA)相互转化为ATP与3-磷酸甘油酸(3PGA)。大多数细菌有一个该基因,哺乳动物有两个拷贝,而植物基因组含有三个或更多个该基因。在本研究中,我们在玉米自交系B73基因组中鉴定出五个该基因,预测它们编码的蛋白质靶向不同的亚细胞区室:、和(叶绿体)、(细胞质)以及(细胞核)。在非光合组织(根和玉米穗轴)中表达最高,其中PGK活性也最大,这与糖酵解中的功能一致。绿色组织(叶片和苞叶)显示出中等水平的PGK活性,并且主要表达和,表明参与光合代谢。表达较弱,在任何组织中均未检测到。系统发育分析表明,植物的光合和糖酵解同工酶聚集在一起,但与动物、真菌、原生动物和细菌的PGK不同,这表明植物的光合和糖酵解同工酶在植物谱系与其他类群分化后发生了多样化。这些结果显示了每个PGK在玉米中的独特作用,并为该关键酶的调控和功能的未来研究提供了基础。