Department of Software Engineering, Computer Science School, University of Granada, 18014 Granada, Spain.
Sensors (Basel). 2020 Nov 25;20(23):6730. doi: 10.3390/s20236730.
Electroencephalography (EEG) signals to detect motor imagery have been used to help patients with low mobility. However, the regular brain computer interfaces (BCI) capturing the EEG signals usually require intrusive devices and cables linked to machines. Recently, some commercial low-intrusive BCI headbands have appeared, but with less electrodes than the regular BCIs. Some works have proved the ability of the headbands to detect basic motor imagery. However, all of these works have focused on the accuracy of the detection, using session sizes larger than 10 s, in order to improve the accuracy. These session sizes prevent actuators using the headbands to interact with the user within an adequate response time. In this work, we explore the reduction of time-response in a low-intrusive device with only 4 electrodes using deep learning to detect right/left hand motion imagery. The obtained model is able to lower the detection time while maintaining an acceptable accuracy in the detection. Our findings report an accuracy above 83.8% for response time of 2 s overcoming the related works with both low- and high-intrusive devices. Hence, our low-intrusive and low-cost solution could be used in an interactive system with a reduced response time of 2 s.
脑电图(EEG)信号用于检测运动想象,已被用于帮助低活动能力的患者。然而,常规的脑机接口(BCI)捕捉 EEG 信号通常需要与机器相连的侵入性设备和电缆。最近,一些商业的低侵入性 BCI 头带已经出现,但电极数量比常规 BCI 少。一些研究已经证明了头带检测基本运动想象的能力。然而,所有这些研究都集中在检测的准确性上,使用的会话大小大于 10 秒,以提高准确性。这些会话大小使得使用头带的执行器无法在足够的响应时间内与用户交互。在这项工作中,我们探索了使用深度学习仅使用 4 个电极的低侵入性设备的时间响应减少问题,以检测左右手运动想象。所得到的模型能够在保持可接受的检测准确性的同时降低检测时间。我们的研究结果报告了在 2 秒的响应时间下的准确率高于 83.8%,超过了使用低侵入性和高侵入性设备的相关工作。因此,我们的低侵入性和低成本解决方案可以用于具有 2 秒的减少响应时间的交互式系统。