Lane J M, Cornell C N, Healey J H
Instr Course Lect. 1987;36:71-83.
We have discussed the biomechanical and biomaterial properties of bone with emphasis on the microenvironment. The microdensity of bone tissues determines the resistance to compressive forces (strength = density2). The structural orientation of bone determines the ability of bone to withstand torsion and bending forces. Highly remodeled bone is brittle and fractures easily because of the multiple reversal planes within the bone plates. Conversely, augmentation of bone on the periphery by modeling leads to increased material microstrength and structural macrostrength. Consequently, appositional modeling augments whereas remodeling diminishes bone strength. Hip fractures, spinal fractures, Colles' fractures, and pelvic fractures have been discussed in terms of their pathophysiology and treatment. An algorithm (Fig. 4-7) has been presented for the differential diagnosis of patients with recently discovered spinal compression fractures. Lastly, a discussion of exercise demonstrated its beneficial role, especially in the retention of bone mass.
我们已经讨论了骨骼的生物力学和生物材料特性,重点是微环境。骨组织的微密度决定了对压缩力的抵抗力(强度=密度²)。骨骼的结构取向决定了骨骼承受扭转和弯曲力的能力。高度重塑的骨骼很脆,容易骨折,因为骨板内有多个反转平面。相反,通过塑形在周边增加骨量会导致材料微强度和结构宏强度增加。因此,附加塑形增强而重塑则降低骨强度。我们已经根据髋部骨折、脊柱骨折、Colles骨折和骨盆骨折的病理生理学和治疗方法进行了讨论。已经提出了一种算法(图4-7)用于对最近发现的脊柱压缩性骨折患者进行鉴别诊断。最后,关于运动的讨论表明了其有益作用,特别是在保持骨量方面。