Univ-Lyon, CarMeN Laboratory, INSERM 1060, INRA 1397, Université Claude Bernard Lyon1, INSA Lyon, Oullins, France, IHU OPERA, Groupement Hospitalier EST, Bâtiment B13, 59 boulevard Pinel, F-69500 Bron, France.
Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
Cells. 2020 Nov 25;9(12):2542. doi: 10.3390/cells9122542.
Following a prolonged exposure to hypoxia-reoxygenation, a partial disruption of the ER-mitochondria tethering by mitofusin 2 (MFN2) knock-down decreases the Ca transfer between the two organelles limits mitochondrial Ca overload and prevents the Ca-dependent opening of the mitochondrial permeability transition pore, i.e., limits cardiomyocyte cell death. The impact of the metabolic changes resulting from the alteration of this Cacrosstalk on the tolerance to hypoxia-reoxygenation injury remains partial and fragmented between different field of expertise. >In this study, we report that MFN2 loss of function results in a metabolic switch driven by major modifications in energy production by mitochondria. During hypoxia, mitochondria maintain their ATP concentration and, concomitantly, the inner membrane potential by importing cytosolic ATP into mitochondria through an overexpressed ANT2 protein and by decreasing the expression and activity of the ATP hydrolase via IF1. This adaptation further blunts the detrimental hyperpolarisation of the inner mitochondrial membrane (IMM) upon re-oxygenation. These metabolic changes play an important role to attenuate cell death during a prolonged hypoxia-reoxygenation challenge.
在长时间暴露于缺氧-复氧后,通过敲低线粒体融合蛋白 2(MFN2)部分破坏内质网-线粒体连接,可减少两者之间的 Ca 转移,限制线粒体 Ca 过载,并防止 Ca 依赖性线粒体通透性转换孔的开放,即限制心肌细胞死亡。由于这种 Ca 串扰的改变导致的代谢变化对缺氧-复氧损伤的耐受性的影响在不同专业领域仍然是局部和零散的。在这项研究中,我们报告说,MFN2 功能丧失导致代谢开关,由线粒体能量产生的主要变化驱动。在缺氧期间,线粒体通过通过过度表达的 ANT2 蛋白将胞质 ATP 导入线粒体并通过 IF1 降低 ATP 水解酶的表达和活性来维持其 ATP 浓度和同时维持内膜电位。这种适应进一步减轻了再氧化时线粒体内膜(IMM)的有害超极化。这些代谢变化在长时间缺氧-复氧挑战期间减轻细胞死亡方面发挥了重要作用。