文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Magnetic Particles for CTC Enrichment.

作者信息

Liu Peng, Jonkheijm Pascal, Terstappen Leon W M M, Stevens Michiel

机构信息

Department of Medical Cell BioPhysics, University of Twente, 7522 NB Enschede, The Netherlnds.

Department of Molecular Nanofabrication, University of Twente, 7522 NB Enschede, The Netherlands.

出版信息

Cancers (Basel). 2020 Nov 26;12(12):3525. doi: 10.3390/cancers12123525.


DOI:10.3390/cancers12123525
PMID:33255978
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7760229/
Abstract

Here, we review the characteristics and synthesis of magnetic nanoparticles (MNPs) and place these in the context of their usage in the immunomagnetic enrichment of Circulating Tumor Cells (CTCs). The importance of the different characteristics is explained, the need for a very specific enrichment is emphasized and different (commercial) magnetic separation techniques are shown. As the specificity of an MNP is in a large part dependent on the antibody coated onto the particle, different strategies in the coupling of specific antibodies as well as an overview of the available antibodies is given.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/e4071cf36d48/cancers-12-03525-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/e44fdc7f1ee1/cancers-12-03525-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/55989e50147f/cancers-12-03525-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/0ca74f7ec913/cancers-12-03525-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/724297e93131/cancers-12-03525-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/723c270940d3/cancers-12-03525-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/3833324b3b87/cancers-12-03525-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/e4071cf36d48/cancers-12-03525-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/e44fdc7f1ee1/cancers-12-03525-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/55989e50147f/cancers-12-03525-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/0ca74f7ec913/cancers-12-03525-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/724297e93131/cancers-12-03525-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/723c270940d3/cancers-12-03525-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/3833324b3b87/cancers-12-03525-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b99/7760229/e4071cf36d48/cancers-12-03525-g007.jpg

相似文献

[1]
Magnetic Particles for CTC Enrichment.

Cancers (Basel). 2020-11-26

[2]
Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation.

Pharmaceutics. 2023-10-17

[3]
Folic Acid Targeting for Efficient Isolation and Detection of Ovarian Cancer CTCs from Human Whole Blood Based on Two-Step Binding Strategy.

ACS Appl Mater Interfaces. 2018-4-12

[4]
Nanotechnology for enrichment and detection of circulating tumor cells.

Nanomedicine (Lond). 2015-7

[5]
Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles.

Analyst. 2017-12-4

[6]
Immunomagnetic separation technologies.

Recent Results Cancer Res. 2012

[7]
Subtyping of Magnetically Isolated Breast Cancer Cells Using Magnetic Force Microscopy.

Biotechnol J. 2018-5-2

[8]
Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients.

Acta Oncol. 2011-1-24

[9]
A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells.

Lab Chip. 2016-4-7

[10]
Sensitive antibody-based CTCs detection from peripheral blood.

Hum Antibodies. 2013

引用本文的文献

[1]
Advanced Detection of Pancreatic Cancer Circulating Tumor Cells Using Biomarkers and Magnetic Particle Spectroscopy.

Nanotheranostics. 2025-6-12

[2]
Circulating Tumor Cell Detection for Therapeutic and Prognostic Roles in Breast Cancer.

Cancer Med. 2025-6

[3]
Circulating tumor cell markers for early detection and drug resistance assessment through liquid biopsy.

Front Oncol. 2025-4-7

[4]
Magnetic-Plasmonic Core-Shell Nanoparticles: Properties, Synthesis and Applications for Cancer Detection and Treatment.

Nanomaterials (Basel). 2025-2-10

[5]
Circulating Tumor Cells in Cancer Diagnosis, Therapy, and Theranostics Applications: An Overview of Emerging Materials and Technologies.

Curr Pharm Des. 2025

[6]
Roadmap on magnetic nanoparticles in nanomedicine.

Nanotechnology. 2024-11-5

[7]
Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells.

Sci Rep. 2024-9-29

[8]
A Novel Size-Based Centrifugal Microfluidic Design to Enrich and Magnetically Isolate Circulating Tumor Cells from Blood Cells through Biocompatible Magnetite-Arginine Nanoparticles.

Sensors (Basel). 2024-9-18

[9]
Co-crosslinking strategy for dual functionalization of small magnetic nanoparticles with redox probes and biological probes.

Mikrochim Acta. 2024-7-5

[10]
Advances in the role of circulating tumor cell heterogeneity in metastatic small cell lung cancer.

Cancer Innov. 2023-11-22

本文引用的文献

[1]
MRBLES 2.0: High-throughput generation of chemically functionalized spectrally and magnetically encoded hydrogel beads using a simple single-layer microfluidic device.

Microsyst Nanoeng. 2020-11-30

[2]
Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells.

Proc Natl Acad Sci U S A. 2020-7-8

[3]
A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1.

Anal Bioanal Chem. 2020-9

[4]
A Multifunctional Platform for the Capture, Release, And Enumeration of Circulating Tumor Cells Based on Aptamer Binding, Nicking Endonuclease-Assisted Amplification, And Inductively Coupled Plasma Mass Spectrometry Detection.

Anal Chem. 2020-8-4

[5]
Magnetic-Based Enrichment of Rare Cells from High Concentrated Blood Samples.

Cancers (Basel). 2020-4-10

[6]
Optimization of rVAR2-Based Isolation of Cancer Cells in Blood for Building a Robust Assay for Clinical Detection of Circulating Tumor Cells.

Int J Mol Sci. 2020-3-31

[7]
Rapid Label-Free Isolation of Circulating Tumor Cells from Patients' Peripheral Blood Using Electrically Charged FeO Nanoparticles.

ACS Appl Mater Interfaces. 2020-1-14

[8]
Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation.

J Colloid Interface Sci. 2019-12-23

[9]
Biomimetic Microfluidic System for Fast and Specific Detection of Circulating Tumor Cells.

Anal Chem. 2019-11-25

[10]
Superparamagnetic nanoarchitectures for disease-specific biomarker detection.

Chem Soc Rev. 2019-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索