文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation.

作者信息

Pipatwatcharadate Chawapon, Iyer Poornima Ramesh, Pissuwan Dakrong

机构信息

Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.

出版信息

Pharmaceutics. 2023 Oct 17;15(10):2482. doi: 10.3390/pharmaceutics15102482.


DOI:10.3390/pharmaceutics15102482
PMID:37896242
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10610106/
Abstract

Metastasis of cancer is a major cause of death worldwide. Circulating tumor cells (CTCs) are important in the metastatic process of cancer. CTCs are able to circulate in the bloodstream. Therefore, they can be used as biomarkers of metastasis. However, CTCs are rare when compared to a large number of blood cells in the blood. Many CTC detection methods have been developed to increase CTC detection efficiency. Magnetic nanoparticles (MNPs) have attracted immense attention owing to their potential medical applications. They are particularly appealing as a tool for cell separation. Because of their unique properties, MNPs are of considerable interest for the enrichment of CTCs through CTC or non-CTC separation. Herein, we review recent developments in the application of MNPs to separate CTCs or non-CTCs in samples containing CTCs. This review provides information on new approaches that can be used to detect CTCs in blood samples. The combination of MNPs with other particles for magnetic-based cell separation for CTC detection is discussed. Furthermore, different approaches for synthesizing MNPs are included in this review.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/8145b6551549/pharmaceutics-15-02482-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/40feea9e8f63/pharmaceutics-15-02482-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/2b39a30bc759/pharmaceutics-15-02482-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/b0d437526c5c/pharmaceutics-15-02482-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/e289cd0b7514/pharmaceutics-15-02482-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/25697d000aa9/pharmaceutics-15-02482-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/ca12d03ae03a/pharmaceutics-15-02482-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/97754204430c/pharmaceutics-15-02482-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/16c0eda9033b/pharmaceutics-15-02482-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/bd0726971def/pharmaceutics-15-02482-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/8145b6551549/pharmaceutics-15-02482-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/40feea9e8f63/pharmaceutics-15-02482-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/2b39a30bc759/pharmaceutics-15-02482-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/b0d437526c5c/pharmaceutics-15-02482-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/e289cd0b7514/pharmaceutics-15-02482-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/25697d000aa9/pharmaceutics-15-02482-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/ca12d03ae03a/pharmaceutics-15-02482-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/97754204430c/pharmaceutics-15-02482-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/16c0eda9033b/pharmaceutics-15-02482-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/bd0726971def/pharmaceutics-15-02482-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a483/10610106/8145b6551549/pharmaceutics-15-02482-g010.jpg

相似文献

[1]
Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation.

Pharmaceutics. 2023-10-17

[2]
Simple and rapid colorimetric detection of melanoma circulating tumor cells using bifunctional magnetic nanoparticles.

Analyst. 2017-12-4

[3]
Folic Acid Targeting for Efficient Isolation and Detection of Ovarian Cancer CTCs from Human Whole Blood Based on Two-Step Binding Strategy.

ACS Appl Mater Interfaces. 2018-4-12

[4]
High-Efficiency Isolation and Rapid Identification of Heterogeneous Circulating Tumor Cells (CTCs) Using Dual-Antibody-Modified Fluorescent-Magnetic Nanoparticles.

ACS Appl Mater Interfaces. 2019-10-15

[5]
Microfluidic System Consisting of a Magnetic 3D-Printed Microchannel Filter for Isolation and Enrichment of Circulating Tumor Cells Targeted by Anti-HER2/MOF@Ferrite Core-Shell Nanostructures: A Theranostic CTC Dialysis System.

Anal Chem. 2024-3-19

[6]
Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells.

Acc Chem Res. 2014-10-21

[7]
Efficient isolation and quantification of circulating tumor cells in non-small cell lung cancer patients using peptide-functionalized magnetic nanoparticles.

J Thorac Dis. 2020-8

[8]
Peptide-based isolation of circulating tumor cells by magnetic nanoparticles.

J Mater Chem B. 2014-7-14

[9]
Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients.

Breast Cancer Res. 2008

[10]
Tannic Acid (TA)-Functionalized Magnetic Nanoparticles for EpCAM-Independent Circulating Tumor Cell (CTC) Isolation from Patients with Different Cancers.

ACS Appl Mater Interfaces. 2021-1-27

引用本文的文献

[1]
Magnetic-Assisted Manipulation of Rare Blood Cells for Diagnosis: A Systematic Review.

Biotechnol Bioeng. 2025-6-26

[2]
A Concise Review of the Control and Assessment of Magnetic Affinity Particle Assembly for Live Cell Analyses: State of the Art and Challenges.

Materials (Basel). 2025-5-13

[3]
Establishment and clinical value of a circulating tumor cell system based on a multi-site immune lipid magnetic sphere technique in laryngopharyngeal head and neck tumors.

Am J Cancer Res. 2025-1-15

[4]
Immunolipid magnetic bead-based circulating tumor cell sorting: a novel approach for pathological staging of colorectal cancer.

Front Oncol. 2025-1-24

[5]
Detecting epithelial-mesenchymal transition signaling molecules in cervical epithelial cells aids in the early diagnosis of cervical lesions.

BMC Cancer. 2024-12-27

[6]
Nanoparticles as a novel key driver for the isolation and detection of circulating tumour cells.

Sci Rep. 2024-9-29

[7]
Novel Isolating Approaches to Circulating Tumor Cell Enrichment Based on Microfluidics: A Review.

Micromachines (Basel). 2024-5-27

本文引用的文献

[1]
Colorimetric Sensing of Gram-Negative and Gram-Positive Bacteria Using 4-Mercaptophenylboronic Acid-Functionalized Gold Nanoparticles in the Presence of Polyethylene Glycol.

ACS Omega. 2023-3-30

[2]
Removal of Circulating Tumor Cells from Blood Samples of Cancer Patients Using Highly Magnetic Nanoparticles: A Translational Research Project.

Pharmaceutics. 2022-7-1

[3]
Neutrophil membrane-coated immunomagnetic nanoparticles for efficient isolation and analysis of circulating tumor cells.

Biosens Bioelectron. 2022-10-1

[4]
Folic Acid-Modified Fluorescent-Magnetic Nanoparticles for Efficient Isolation and Identification of Circulating Tumor Cells in Ovarian Cancer.

Biosensors (Basel). 2022-3-21

[5]
Circulating tumor cells: biology and clinical significance.

Signal Transduct Target Ther. 2021-11-22

[6]
Comparison of Single- and Mixed-Sized Gold Nanoparticles on Lateral Flow Assay for Albumin Detection.

Biosensors (Basel). 2021-6-26

[7]
Novel Peptide-Based Magnetic Nanoparticle for Mesenchymal Circulating Tumor Cells Detection.

Anal Chem. 2021-4-13

[8]
Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells.

J Mater Chem B. 2021-1-28

[9]
Nondestructive capture, release, and detection of circulating tumor cells with cystamine-mediated folic acid decorated magnetic nanospheres.

J Mater Chem B. 2020-11-11

[10]
Simple Sonochemical Method to Optimize the Heating Efficiency of Magnetic Nanoparticles for Magnetic Fluid Hyperthermia.

ACS Omega. 2020-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索