Suppr超能文献

使用三种不同全基因组SNP平台对约克夏猪个体出生体重进行方差组分估计和基因组预测

Estimation of Variance Components and Genomic Prediction for Individual Birth Weight Using Three Different Genome-Wide SNP Platforms in Yorkshire Pigs.

作者信息

Lee Jungjae, Lee Sang-Min, Lim Byeonghwi, Park Jun, Song Kwang-Lim, Jeon Jung-Hwan, Na Chong-Sam, Kim Jun-Mo

机构信息

Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do 17546, Korea.

Jung P&C Institute, Inc., 1504 U-TOWER, Yongin-si, Gyeonggi-do 16950, Korea.

出版信息

Animals (Basel). 2020 Nov 26;10(12):2219. doi: 10.3390/ani10122219.

Abstract

This study estimates the individual birth weight (IBW) trait heritability and investigates the genomic prediction efficiency using three types of high-density single nucleotide polymorphism (SNP) genotyping panels in Korean Yorkshire pigs. We use 38,864 IBW phenotypic records to identify a suitable model for statistical genetics, where 698 genotypes match our phenotypic records. During our genomic analysis, the deregressed estimated breeding values (DEBVs) and their reliabilities are used as derived response variables from the estimated breeding values (EBVs). Bayesian methods identify the informative regions and perform the genomic prediction using the IBW trait, in which two common significant window regions (SSC8 27 Mb and SSC15 29 Mb) are identified using the three genotyping platforms. Higher prediction ability is observed using the DEBV-including parent average as a response variable, regardless of the SNP genotyping panels and the Bayesian methods, relative to the DEBV-excluding parent average. Hence, we suggest that fine-mapping studies targeting the identified informative regions in this study are necessary to find the causal mutations to improve the IBW trait's prediction ability. Furthermore, studying the IBW trait using a genomic prediction model with a larger genomic dataset may improve the genomic prediction accuracy in Korean Yorkshire pigs.

摘要

本研究估计了韩国大约克夏猪个体出生体重(IBW)性状的遗传力,并使用三种类型的高密度单核苷酸多态性(SNP)基因分型面板研究了基因组预测效率。我们使用38,864条IBW表型记录来确定适合统计遗传学的模型,其中698个基因型与我们的表型记录匹配。在我们的基因组分析中,去回归估计育种值(DEBVs)及其可靠性被用作从估计育种值(EBVs)派生的响应变量。贝叶斯方法识别信息区域并使用IBW性状进行基因组预测,其中使用三个基因分型平台识别出两个常见的显著窗口区域(SSC8 27 Mb和SSC15 29 Mb)。无论SNP基因分型面板和贝叶斯方法如何,相对于不包括亲本均值的DEBV,使用包括亲本均值的DEBV作为响应变量时观察到更高的预测能力。因此,我们建议针对本研究中确定的信息区域进行精细定位研究,以找到因果突变,提高IBW性状的预测能力。此外,使用具有更大基因组数据集的基因组预测模型研究IBW性状可能会提高韩国大约克夏猪的基因组预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/151b/7761447/4d1ef92321a9/animals-10-02219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验