Martinson Vincent G, Gawryluk Ryan M R, Gowen Brent E, Curtis Caitlin I, Jaenike John, Perlman Steve J
Department of Biology, University of Rochester, Rochester, NY, 14627;
Department of Biology, University of New Mexico, Albuquerque, NM 87131.
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):31979-31986. doi: 10.1073/pnas.2000860117. Epub 2020 Nov 30.
Obligate symbioses involving intracellular bacteria have transformed eukaryotic life, from providing aerobic respiration and photosynthesis to enabling colonization of previously inaccessible niches, such as feeding on xylem and phloem, and surviving in deep-sea hydrothermal vents. A major challenge in the study of obligate symbioses is to understand how they arise. Because the best studied obligate symbioses are ancient, it is especially challenging to identify early or intermediate stages. Here we report the discovery of a nascent obligate symbiosis in , a well-studied nematode parasite of flies. We have found that and its sister species harbor a maternally inherited intracellular bacterial symbiont. We never find the symbiont in nematode-free flies, and virtually all nematodes in the field and the laboratory are infected. Treating nematodes with antibiotics causes a severe reduction in fly infection success. The association is recent, as more distantly related insect-parasitic tylenchid nematodes do not host these endosymbionts. We also report that the nematode symbiont is a member of a widespread monophyletic group of invertebrate host-associated microbes that has independently given rise to at least four obligate symbioses, one in nematodes and three in insects, and that is sister to , a lineage of plant pathogenic bacteria. Comparative genomic analysis of this group, which we name Symbiopectobacterium, shows signatures of genome erosion characteristic of early stages of symbiosis, with the symbiont's genome containing over a thousand predicted pseudogenes, comprising a third of its genome.
涉及细胞内细菌的专性共生改变了真核生物的生命历程,从提供有氧呼吸和光合作用到使生物能够在以前无法进入的生态位中定殖,比如以木质部和韧皮部为食,以及在深海热液喷口生存。专性共生研究中的一个主要挑战是了解它们是如何产生的。由于研究得最透彻的专性共生关系都很古老,所以识别早期或中间阶段尤其具有挑战性。在这里,我们报告在一种对果蝇研究充分的线虫寄生虫中发现了一种新生的专性共生关系。我们发现[线虫名称]及其姊妹物种携带一种母系遗传的细胞内细菌共生体。在没有线虫的果蝇中我们从未发现这种共生体,而在野外和实验室中几乎所有线虫都受到了感染。用抗生素处理线虫会导致果蝇感染成功率大幅降低。这种共生关系是最近才出现的,因为亲缘关系更远的昆虫寄生垫刃线虫并不携带这些内共生体。我们还报告说,[线虫名称]的线虫共生体是一个广泛的无脊椎动物宿主相关微生物单系群的成员,该单系群至少独立产生了四种专性共生关系,一种在线虫中,三种在昆虫中,并且它是植物致病细菌谱系[细菌名称]的姊妹群。对这个我们命名为共生果胶杆菌属(Symbiopectobacterium)的类群进行比较基因组分析,显示出共生早期阶段基因组侵蚀的特征,其中[线虫名称]共生体的基因组包含超过一千个预测的假基因,占其基因组的三分之一。