Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201.
Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104;
Proc Natl Acad Sci U S A. 2020 Dec 15;117(50):32056-32065. doi: 10.1073/pnas.2005877117. Epub 2020 Nov 30.
MNRR1 (CHCHD2) is a bi-organellar regulator of mitochondrial function that directly activates cytochrome oxidase in the mitochondria and functions in the nucleus as a transcriptional activator for hundreds of genes. Since MNRR1 depletion contains features of a mitochondrial disease phenotype, we evaluated the effects of forced expression of MNRR1 on the mitochondrial disease MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) syndrome. MELAS is a multisystem encephalomyopathy disorder that can result from a heteroplasmic mutation in the mitochondrial DNA (mtDNA; m.3243A > G) at heteroplasmy levels of ∼50 to 90%. Since cybrid cell lines with 73% m.3243A > G heteroplasmy (DW7) display a significant reduction in MNRR1 levels compared to the wild type (0% heteroplasmy) (CL9), we evaluated the effects of MNRR1 levels on mitochondrial functioning. Overexpression of MNRR1 in DW7 cells induces the mitochondrial unfolded protein response (UPR), autophagy, and mitochondrial biogenesis, thereby rescuing the mitochondrial phenotype. It does so primarily as a transcription activator, revealing this function to be a potential therapeutic target. The role of MNRR1 in stimulating UPR, which is blunted in MELAS cells, was surprising and further investigation uncovered that under conditions of stress the import of MNRR1 into the mitochondria was blocked, allowing the protein to accumulate in the nucleus to enhance its transcription function. In the mammalian system, ATF5, has been identified as a mediator of UPR MNRR1 knockout cells display an ∼40% reduction in the protein levels of ATF5, suggesting that MNRR1 plays an important role upstream of this known mediator of UPR.
MNRR1(CHCHD2)是一种线粒体功能的双器官调节因子,它直接激活线粒体中的细胞色素氧化酶,并在核内作为数百个基因的转录激活剂发挥作用。由于 MNRR1 耗竭具有线粒体疾病表型的特征,我们评估了强制表达 MNRR1 对线粒体疾病 MELAS(线粒体脑肌病、乳酸酸中毒和卒中样发作)综合征的影响。MELAS 是一种多系统脑肌病紊乱,可能由线粒体 DNA(mtDNA;m.3243A > G)的异质性突变引起,异质性水平为 ∼50 至 90%。由于具有 73% m.3243A > G 异质性(DW7)的细胞杂种系与野生型(0%异质性)(CL9)相比,MNRR1 水平显著降低,我们评估了 MNRR1 水平对线粒体功能的影响。DW7 细胞中 MNRR1 的过表达诱导线粒体未折叠蛋白反应(UPR)、自噬和线粒体生物发生,从而挽救线粒体表型。它主要作为转录激活剂起作用,揭示了这一功能是一个潜在的治疗靶点。MNRR1 在刺激 UPR 中的作用在 MELAS 细胞中被削弱,这令人惊讶,进一步的研究揭示,在应激条件下,MNRR1 进入线粒体的输入被阻断,允许蛋白质在核内积累,增强其转录功能。在哺乳动物系统中,ATF5 已被确定为 UPR 的介质,MNRR1 敲除细胞的 ATF5 蛋白水平降低约 40%,这表明 MNRR1 在该已知 UPR 介质的上游发挥重要作用。