Suppr超能文献

健康老龄化干预措施可减少重复元件转录本。

Healthy Aging Interventions Reduce Repetitive Element Transcripts.

机构信息

Department of Health and Exercise Science, Colorado State University, Fort Collins.

Center for Healthy Aging, Colorado State University, Fort Collins.

出版信息

J Gerontol A Biol Sci Med Sci. 2021 Apr 30;76(5):805-810. doi: 10.1093/gerona/glaa302.

Abstract

Transcripts from noncoding repetitive elements (REs) in the genome may be involved in aging. However, they are often ignored in transcriptome studies on healthspan and lifespan, and their role in healthy aging interventions has not been characterized. Here, we analyze REs in RNA-seq datasets from mice subjected to robust healthspan- and lifespan-increasing interventions including calorie restriction, rapamycin, acarbose, 17-α-estradiol, and Protandim. We also examine RE transcripts in long-lived transgenic mice, and in mice subjected to a high-fat diet, and we use RNA-seq to investigate the influence of aerobic exercise on RE transcripts with aging in humans. We find that (a) healthy aging interventions/behaviors globally reduce RE transcripts, whereas aging and high-fat diet (an age-accelerating treatment) increase RE expression; and (b) reduced RE expression with healthy aging interventions is associated with biological/physiological processes mechanistically linked with aging. Our results suggest that RE transcript dysregulation and suppression are likely novel mechanisms underlying aging and healthy aging interventions, respectively.

摘要

基因组中非编码重复元件(RE)的转录本可能与衰老有关。然而,在关于健康寿命和寿命的转录组研究中,它们通常被忽略,其在健康衰老干预中的作用尚未得到描述。在这里,我们分析了接受包括热量限制、雷帕霉素、阿卡波糖、17-α-雌二醇和 Protandim 在内的强大健康寿命和寿命延长干预的小鼠的 RNA-seq 数据集的 RE。我们还检查了长寿转基因小鼠和高脂肪饮食小鼠中的 RE 转录本,并使用 RNA-seq 来研究有氧运动对人类衰老过程中 RE 转录本的影响。我们发现:(a)健康的衰老干预/行为通常会降低 RE 转录本,而衰老和高脂肪饮食(一种加速衰老的治疗方法)会增加 RE 的表达;(b)健康衰老干预中 RE 表达的降低与衰老过程中具有机制联系的生物学/生理学过程有关。我们的结果表明,RE 转录本的失调和抑制可能分别是衰老和健康衰老干预的新机制。

相似文献

1
Healthy Aging Interventions Reduce Repetitive Element Transcripts.
J Gerontol A Biol Sci Med Sci. 2021 Apr 30;76(5):805-810. doi: 10.1093/gerona/glaa302.
3
Quantification of healthspan in aging mice: introducing FAMY and GRAIL.
Geroscience. 2024 Oct;46(5):4203-4215. doi: 10.1007/s11357-024-01200-5. Epub 2024 May 17.
4
Impact of Dietary Interventions on Noncoding RNA Networks and mRNAs Encoding Chromatin-Related Factors.
Cell Rep. 2017 Mar 21;18(12):2957-2968. doi: 10.1016/j.celrep.2017.03.001.
5
Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner.
Aging Cell. 2017 Aug;16(4):652-660. doi: 10.1111/acel.12590. Epub 2017 May 20.
6
Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and models.
Aging Cell. 2020 Jul;19(7):e13167. doi: 10.1111/acel.13167. Epub 2020 Jun 5.
7
Cap-independent translation: A shared mechanism for lifespan extension by rapamycin, acarbose, and 17α-estradiol.
Aging Cell. 2021 May;20(5):e13345. doi: 10.1111/acel.13345. Epub 2021 Mar 20.
8
Repetitive element transcript accumulation is associated with inflammaging in humans.
Geroscience. 2024 Dec;46(6):5663-5679. doi: 10.1007/s11357-024-01126-y. Epub 2024 Apr 20.
9
Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11277-11282. doi: 10.1073/pnas.1604621113. Epub 2016 Sep 12.

引用本文的文献

2
Loss of H3K9 trimethylation leads to premature aging.
Res Sq. 2024 Dec 16:rs.3.rs-4012025. doi: 10.21203/rs.3.rs-4012025/v1.
3
GEPREP: A comprehensive data atlas of RNA-seq-based gene expression profiles of exercise responses.
J Sport Health Sci. 2024 Sep 26;14:100992. doi: 10.1016/j.jshs.2024.100992.
4
Loss of H3K9 trimethylation leads to premature aging.
bioRxiv. 2024 Jul 24:2024.07.24.604929. doi: 10.1101/2024.07.24.604929.
6
An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells.
PLoS Genet. 2024 Jun 7;20(6):e1011311. doi: 10.1371/journal.pgen.1011311. eCollection 2024 Jun.
7
Repetitive element transcript accumulation is associated with inflammaging in humans.
Geroscience. 2024 Dec;46(6):5663-5679. doi: 10.1007/s11357-024-01126-y. Epub 2024 Apr 20.
9
Navigating the brain and aging: exploring the impact of transposable elements from health to disease.
Front Cell Dev Biol. 2024 Feb 27;12:1357576. doi: 10.3389/fcell.2024.1357576. eCollection 2024.
10
Protective effects of apigenin on the brain transcriptome with aging.
Mech Ageing Dev. 2024 Feb;217:111889. doi: 10.1016/j.mad.2023.111889. Epub 2023 Nov 24.

本文引用的文献

1
Repetitive elements as a transcriptomic marker of aging: Evidence in multiple datasets and models.
Aging Cell. 2020 Jul;19(7):e13167. doi: 10.1111/acel.13167. Epub 2020 Jun 5.
3
Transposable Elements, Inflammation, and Neurological Disease.
Front Neurol. 2019 Aug 20;10:894. doi: 10.3389/fneur.2019.00894. eCollection 2019.
4
Identification and Application of Gene Expression Signatures Associated with Lifespan Extension.
Cell Metab. 2019 Sep 3;30(3):573-593.e8. doi: 10.1016/j.cmet.2019.06.018. Epub 2019 Jul 25.
5
Author Correction: L1 drives IFN in senescent cells and promotes age-associated inflammation.
Nature. 2019 Aug;572(7767):E5. doi: 10.1038/s41586-019-1350-9.
6
TDP-43 knockdown causes innate immune activation via protein kinase R in astrocytes.
Neurobiol Dis. 2019 Dec;132:104514. doi: 10.1016/j.nbd.2019.104514. Epub 2019 Jun 21.
7
Ten things you should know about transposable elements.
Genome Biol. 2018 Nov 19;19(1):199. doi: 10.1186/s13059-018-1577-z.
8
A time to fast.
Science. 2018 Nov 16;362(6416):770-775. doi: 10.1126/science.aau2095.
9
The epigenetic alterations of endogenous retroelements in aging.
Mech Ageing Dev. 2018 Sep;174:30-46. doi: 10.1016/j.mad.2018.02.002. Epub 2018 Feb 16.
10
Survival of the fittest: VOmax, a key predictor of longevity?
Front Biosci (Landmark Ed). 2018 Mar 1;23(8):1505-1516. doi: 10.2741/4657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验