Suppr超能文献

H3K9三甲基化的缺失会导致早衰。

Loss of H3K9 trimethylation leads to premature aging.

作者信息

Mrabti Calida, Yang Na, Desdín-Micó Gabriela, Alonso-Calleja Alejandro, Vílchez-Acosta Alba, Pico Sara, Parras Alberto, Piao Yulan, Schoenfeldt Lucas, Luo Siyuan, Haghani Amin, Brooke Robert T, Maza María Del Carmen, Branchina Clémence, Bignon Yohan, Maroun Céline Yacoub, von Meyenn Ferdinand, Naveiras Olaia, Horvath Steve, Sen Payel, Ocampo Alejandro

机构信息

Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud, Switzerland.

Laboratory of Genetics and Genomics, National Institute on Aging, NIH, Baltimore, MD 21224, USA.

出版信息

Res Sq. 2024 Dec 16:rs.3.rs-4012025. doi: 10.21203/rs.3.rs-4012025/v1.

Abstract

Aging is the major risk factor for most human diseases and represents a major socioeconomical challenge for modern societies. Despite its importance, the process of aging remains poorly understood. Epigenetic dysregulation has been proposed as a key driver of the aging process. Alterations in transcriptional networks and chromatin structure might be central to age-related functional decline. A prevalent feature described during aging is the overall reduction in heterochromatin, specifically marked by the loss of the repressive histone modification, histone 3 lysine 9 trimethylation (H3K9me3). However, the role of H3K9me3 in aging, especially in mammals, remains unclear. Here we show using a novel mouse strain, "TKOc", carrying a triple knockout of three methyltransferases responsible for H3K9me3 deposition, that the inducible loss of H3K9me3 in adulthood results in premature aging. TKOc mice exhibit reduced lifespan, lower body weight, increased frailty index, multi-organ degeneration, transcriptional changes with significant upregulation of transposable elements, and accelerated epigenetic age. Our data strongly supports the concept that the loss of epigenetic information might directly drives the aging process. These findings reveal the importance of epigenetic regulation in aging and suggest that interventions targeting epigenetic modifications could potentially slow down or reverse age-related decline. Understanding the molecular mechanisms underlying the process of aging will be crucial for developing novel therapeutic strategies that can delay the onset of age-associated diseases and preserve human health at old age specially in rapidly aging societies.

摘要

衰老作为大多数人类疾病的主要风险因素,是现代社会面临的重大社会经济挑战。尽管衰老十分重要,但其过程仍未被充分理解。表观遗传失调被认为是衰老过程的关键驱动因素。转录网络和染色质结构的改变可能是与年龄相关的功能衰退的核心。衰老过程中一个普遍的特征是异染色质整体减少,具体表现为抑制性组蛋白修饰——组蛋白3赖氨酸9三甲基化(H3K9me3)的缺失。然而,H3K9me3在衰老过程中的作用,尤其是在哺乳动物中的作用,仍不清楚。在此,我们使用一种新型小鼠品系“TKOc”进行研究,该品系携带负责H3K9me3沉积的三种甲基转移酶的三重敲除,结果表明成年期H3K9me3的诱导性缺失会导致早衰。TKOc小鼠表现出寿命缩短、体重减轻、虚弱指数增加、多器官退化、伴随着转座元件显著上调的转录变化以及表观遗传年龄加速。我们的数据有力地支持了表观遗传信息的缺失可能直接驱动衰老过程这一概念。这些发现揭示了表观遗传调控在衰老中的重要性,并表明针对表观遗传修饰的干预措施可能会减缓或逆转与年龄相关的衰退。了解衰老过程背后的分子机制对于开发新的治疗策略至关重要,这些策略可以延缓与年龄相关疾病的发生,并在老龄化迅速的社会中特别保障老年人的健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6942/11702797/d0143438e927/nihpp-rs4012025v1-f0006.jpg

相似文献

1
Loss of H3K9 trimethylation leads to premature aging.
Res Sq. 2024 Dec 16:rs.3.rs-4012025. doi: 10.21203/rs.3.rs-4012025/v1.
2
Loss of H3K9 trimethylation leads to premature aging.
bioRxiv. 2024 Jul 24:2024.07.24.604929. doi: 10.1101/2024.07.24.604929.
3
Epigenetic plasticity safeguards heterochromatin configuration in mammals.
Nucleic Acids Res. 2023 Jul 7;51(12):6190-6207. doi: 10.1093/nar/gkad387.
4
Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.
Circ Res. 2025 Feb 14;136(4):379-399. doi: 10.1161/CIRCRESAHA.124.325374. Epub 2025 Jan 22.
6
H3K9me3 Inhibition Improves Memory, Promotes Spine Formation, and Increases BDNF Levels in the Aged Hippocampus.
J Neurosci. 2016 Mar 23;36(12):3611-22. doi: 10.1523/JNEUROSCI.2693-15.2016.
7
The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis.
PLoS Genet. 2011 Mar;7(3):e1001325. doi: 10.1371/journal.pgen.1001325. Epub 2011 Mar 10.
8
Epigenetic aging of mammalian gametes.
Mol Reprod Dev. 2023 Dec;90(12):785-803. doi: 10.1002/mrd.23717. Epub 2023 Nov 24.
9
The Emerging Role of H3K9me3 as a Potential Therapeutic Target in Acute Myeloid Leukemia.
Front Oncol. 2019 Aug 2;9:705. doi: 10.3389/fonc.2019.00705. eCollection 2019.
10
Region-specific H3K9me3 gain in aged somatic tissues in Caenorhabditis elegans.
PLoS Genet. 2021 Sep 10;17(9):e1009432. doi: 10.1371/journal.pgen.1009432. eCollection 2021 Sep.

本文引用的文献

1
DNA repair-deficient premature aging models display accelerated epigenetic age.
Aging Cell. 2024 Feb;23(2):e14058. doi: 10.1111/acel.14058. Epub 2023 Dec 22.
2
A hyper-quiescent chromatin state formed during aging is reversed by regeneration.
Mol Cell. 2023 May 18;83(10):1659-1676.e11. doi: 10.1016/j.molcel.2023.04.005. Epub 2023 Apr 27.
3
Aging Hallmarks and the Role of Oxidative Stress.
Antioxidants (Basel). 2023 Mar 6;12(3):651. doi: 10.3390/antiox12030651.
4
Loss of epigenetic information as a cause of mammalian aging.
Cell. 2023 Jan 19;186(2):305-326.e27. doi: 10.1016/j.cell.2022.12.027. Epub 2023 Jan 12.
5
Resurrection of endogenous retroviruses during aging reinforces senescence.
Cell. 2023 Jan 19;186(2):287-304.e26. doi: 10.1016/j.cell.2022.12.017. Epub 2023 Jan 6.
6
A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues.
Nat Commun. 2022 Aug 16;13(1):4827. doi: 10.1038/s41467-022-32552-1.
7
Genetic loci and metabolic states associated with murine epigenetic aging.
Elife. 2022 Apr 7;11:e75244. doi: 10.7554/eLife.75244.
8
A mammalian methylation array for profiling methylation levels at conserved sequences.
Nat Commun. 2022 Feb 10;13(1):783. doi: 10.1038/s41467-022-28355-z.
9
The role of retrotransposable elements in ageing and age-associated diseases.
Nature. 2021 Aug;596(7870):43-53. doi: 10.1038/s41586-021-03542-y. Epub 2021 Aug 4.
10
Complete loss of H3K9 methylation dissolves mouse heterochromatin organization.
Nat Commun. 2021 Jul 16;12(1):4359. doi: 10.1038/s41467-021-24532-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验