Suppr超能文献

在 COVID-19 大流行期间通过 Twitter 识别公众关注和反应:一项文本挖掘分析。

Identifying public concerns and reactions during the COVID-19 pandemic on Twitter: A text-mining analysis.

机构信息

College of Nursing and Public Health, Adelphi University, Garden City, NY, USA.

School of Engineering and Applied Sciences, University at Buffalo, SUNY, Buffalo, NY, USA.

出版信息

Public Health Nurs. 2021 Mar;38(2):145-151. doi: 10.1111/phn.12843. Epub 2020 Nov 30.

Abstract

Efforts to control the current coronavirus disease 2019 (COVID-19) pandemic have led to national lockdowns around the world. Reactions to the rapidly evolving outbreak were shared on social media platforms. We conducted a mixed-methods analysis of tweets collected from May 10 to May 24, 2020, using MAXQDA software in conjunction with Twitters search API using the keywords: "COVID-19," "coronavirus pandemic," "Covid19," "face masks," and included terms such as "Queens," "Bronx," "New York." A total of 7, 301 COVID-19-related tweets across the globe were analyzed. We used SAS Text Miner V.15.1 for descriptive text mining to uncover the primary topics in unstructured textual data. Content analysis of tweets revealed six themes: surveillance, prevention, treatments, testing and cure, symptoms and transmission, fear, and financial loss. Our study also demonstrates the feasibility of using Twitter to capture real-time data to assess the public's concerns and public health needs during the COVID-19 pandemic.

摘要

为控制当前 2019 年冠状病毒病(COVID-19)大流行,全球各国纷纷实行封锁措施。人们在社交媒体平台上分享了对这一迅速演变的疫情的反应。我们使用 MAXQDA 软件结合 Twitter 的搜索 API,于 2020 年 5 月 10 日至 5 月 24 日期间,对收集到的推文进行了混合方法分析,使用的关键词为:“COVID-19”“冠状病毒大流行”“Covid19”“口罩”,并包括“皇后区”“布朗克斯”“纽约”等术语。分析了全球范围内共 7301 条与 COVID-19 相关的推文。我们使用 SAS Text Miner V.15.1 进行描述性文本挖掘,以揭示非结构化文本数据中的主要主题。推文的内容分析揭示了六个主题:监测、预防、治疗、检测和治疗、症状和传播、恐惧和经济损失。我们的研究还表明,使用 Twitter 捕获实时数据以评估 COVID-19 大流行期间公众关注和公共卫生需求是可行的。

相似文献

引用本文的文献

本文引用的文献

2
The end of social confinement and COVID-19 re-emergence risk.社交隔离的结束与 COVID-19 再次出现的风险。
Nat Hum Behav. 2020 Jul;4(7):746-755. doi: 10.1038/s41562-020-0908-8. Epub 2020 Jun 22.
5
Digital technology and COVID-19.数字技术与 COVID-19。
Nat Med. 2020 Apr;26(4):459-461. doi: 10.1038/s41591-020-0824-5.
8
The COVID-19 Pandemic in the US: A Clinical Update.美国的新冠疫情:临床最新情况
JAMA. 2020 May 12;323(18):1767-1768. doi: 10.1001/jama.2020.5788.
10
An interactive web-based dashboard to track COVID-19 in real time.一个基于网络的交互式仪表盘,用于实时追踪新冠病毒。
Lancet Infect Dis. 2020 May;20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1. Epub 2020 Feb 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验