Institute of Applied Microbiology iAMB, Aachen Biology and Biotechnology ABBt, RWTH Aachen University, Aachen, Germany.
Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute, Beutenbergstrasse 11a, Jena, Germany.
ACS Chem Biol. 2020 Dec 18;15(12):3244-3252. doi: 10.1021/acschembio.0c00805. Epub 2020 Dec 1.
Microbial phenazines are getting increasing attention for antimicrobial and biotechnological applications. Phenazine production of the most well-known producer is subject to a highly complex regulation network involving both quorum sensing and catabolite repression. These networks affect the expression of the two redundant gene operons responsible for phenazine-1-carboxylate (PCA) production and two specific genes and necessary for pyocyanin production. To decipher the specific functionality of these genes, in this study, specific phenazine gene deletion mutants of PA14 were generated and characterized in glucose and 2,3-butanediol media. Phenazine concentration and expression levels of the remaining genes were analyzed in parallel experiments. The findings suggest a strong dominance of operon resulting in a 10-fold higher expression of compared to and almost exclusive production of PCA from this operon. The genes and seem to exhibit antagonistic function in phenazine production. An upregulation of explains the documented enhanced pyocyanin production in a 2,3-butanediol medium. Applied to a bioelectrochemical system, the altered phenazine production of the mutant strains is directly translated into current generation. Additionally, the deletion of the phenazine genes induced the activation of alternative energy pathways, which resulted in the accumulation of various fermentation products. Overall, modulating the genetic repertoire of the phenazine genes tremendously affects phenazine production levels, which are naturally kept in tight homeostasis in the wildtype. This important information can be directly utilized for ongoing efforts of heterologous biotechnological phenazine production.
微生物苯并嗪因其在抗菌和生物技术方面的应用而受到越来越多的关注。最著名的苯并嗪产生菌的苯并嗪生产受到高度复杂的调控网络的影响,包括群体感应和代谢物阻遏。这些网络影响负责苯并嗪-1-羧酸(PCA)生产的两个冗余基因操纵子和两个特定基因 和 的表达,这些基因对于绿脓菌素的生产是必要的。为了解这些基因的特定功能,在本研究中,生成并表征了 PA14 的特定苯并嗪基因缺失突变体,在葡萄糖和 2,3-丁二醇培养基中进行了表征。在平行实验中分析了苯并嗪浓度和剩余基因的表达水平。研究结果表明,操纵子 的强烈优势导致与 和相比, 的表达水平高出 10 倍,并且几乎仅从该操纵子产生 PCA。 和 基因似乎在苯并嗪生产中表现出拮抗作用。 的上调解释了在 2,3-丁二醇培养基中记录到的增强的绿脓菌素生产。应用于生物电化学系统,突变菌株改变的苯并嗪生产直接转化为电流产生。此外,苯并嗪基因的缺失诱导了替代能量途径的激活,导致各种发酵产物的积累。总的来说,调节苯并嗪基因的遗传组成极大地影响了苯并嗪的生产水平,而在野生型中,苯并嗪的生产水平自然保持在紧密的动态平衡中。这些重要信息可直接用于正在进行的异源生物技术苯并嗪生产的努力。