Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), Jena, Germany.
Faculty of Biological Sciences, Friedrich Schiller University (FSU), Jena, Germany.
Microb Biotechnol. 2021 Jul;14(4):1613-1626. doi: 10.1111/1751-7915.13827. Epub 2021 May 17.
Pseudomonas aeruginosa produces phenazine-1-carboxylic acid (PCA) and pyocyanin (PYO), which aid its anaerobic survival by mediating electron transfer to distant oxygen. These natural secondary metabolites are being explored in biotechnology to mediate electron transfer to the anode of bioelectrochemical systems. A major challenge is that only a small fraction of electrons from microbial substrate conversion is recovered. It remained unclear whether phenazines can re-enter the cell and thus, if the electrons accessed by the phenazines arise mainly from cytoplasmic or periplasmic pathways. Here, we prove that the periplasmic glucose dehydrogenase (Gcd) of P. aeruginosa and P. putida is involved in the reduction of natural phenazines. PYO displayed a 60-fold faster enzymatic reduction than PCA; PCA was, however, more stable for long-term electron shuttling to the anode. Evaluation of a Gcd knockout and overexpression strain showed that up to 9% of the anodic current can be designated to this enzymatic reaction. We further assessed phenazine uptake with the aid of two molecular biosensors, which experimentally confirm the phenazines' ability to re-enter the cytoplasm. These findings significantly advance the understanding of the (electro) physiology of phenazines for future tailoring of phenazine electron discharge in biotechnological applications.
铜绿假单胞菌产生吩嗪-1-羧酸(PCA)和绿脓菌素(PYO),通过介导电子向远处的氧气转移,帮助其在厌氧条件下存活。这些天然的次级代谢产物正在生物技术中被探索,以介导电子向生物电化学系统的阳极转移。一个主要的挑战是,只有微生物底物转化产生的一小部分电子被回收。目前尚不清楚吩嗪是否可以重新进入细胞,因此,吩嗪所利用的电子主要来自细胞质还是周质途径。在这里,我们证明了铜绿假单胞菌和恶臭假单胞菌的周质葡萄糖脱氢酶(Gcd)参与了天然吩嗪的还原。PYO 的酶促还原速度比 PCA 快 60 倍;然而,PCA 对于向阳极进行长期电子穿梭更为稳定。对 Gcd 敲除和过表达菌株的评估表明,高达 9%的阳极电流可以归因于该酶促反应。我们进一步借助两个分子生物传感器评估了吩嗪的摄取情况,这两个传感器实验证实了吩嗪重新进入细胞质的能力。这些发现极大地促进了对吩嗪(电)生理学的理解,为未来在生物技术应用中定制吩嗪电子放电提供了依据。