Suppr超能文献

磁性纳米结构负载双连续纳米球支持多载物细胞内递送和氧化响应形态转变。

Magnetic Nanostructure-Loaded Bicontinuous Nanospheres Support Multicargo Intracellular Delivery and Oxidation-Responsive Morphological Transitions.

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Department of Materials Science & Engineering, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

ACS Appl Mater Interfaces. 2020 Dec 16;12(50):55584-55595. doi: 10.1021/acsami.0c15920. Epub 2020 Dec 1.

Abstract

Magnetic nanostructures (MNS) have a wide range of biological applications due to their biocompatibility, superparamagnetic properties, and customizable composition that includes iron oxide (FeO), Zn, and Mn. However, several challenges to the biomedical usage of MNS must still be addressed, such as formulation stability, inability to encapsulate therapeutic payloads, and variable clearance rates in vivo. Here, we enhance the utility of MNS during controlled delivery applications via encapsulation within polymeric bicontinuous nanospheres (BCNs) composed of poly(ethylene glycol)--poly(propylene sulfide) (PEG--PPS) copolymers. PEG--PPS BCNs have demonstrated versatile encapsulation and delivery capabilities for both hydrophilic and hydrophobic payloads due to their unique and highly organized cubic phase nanoarchitecture. MNS-embedded BCNs (MBCNs) were thus coloaded with physicochemically diverse molecular payloads using the technique of flash nanoprecipitation and characterized in terms of their structure and in vivo biodistribution following intravenous administration. Retention of the internal aqueous channels and cubic architecture of MBCNs were verified using cryogenic transmission electron microscopy and small-angle X-ray scattering, respectively. MBCNs demonstrated improvement in magnetic resonance imaging (MRI) contrast enhancement ( relaxivity) as compared to free MNS, which in combination with scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy evidenced the clustering and continued access to water of MNS following encapsulation. Furthermore, MBCNs were found to be noncytotoxic and able to deliver their hydrophilic and hydrophobic small-molecule payloads both in vitro and in vivo. Finally, the oxidation sensitivity of the hydrophobic PPS block allowed MBCNs to undergo a unique, triggerable transition in morphology into MNS-bearing micellar nanocarriers. In summary, MBCNs are an attractive platform for the delivery of molecular and nanoscale payloads for diverse on-demand and sustained drug delivery applications.

摘要

磁性纳米结构(MNS)由于其生物相容性、超顺磁性和可定制的组成(包括氧化铁(FeO)、Zn 和 Mn)而在生物医学领域有广泛的应用。然而,MNS 在生物医学中的应用仍存在一些挑战,例如制剂稳定性、无法封装治疗性有效载荷、以及体内清除率的变化。在这里,我们通过将 MNS 封装在由聚乙二醇-聚(丙硫醚)(PEG-PPS)共聚物组成的聚合物双连续纳米球(BCN)内,来提高 MNS 在控制释放应用中的效用。PEG-PPS BCN 因其独特的、高度有序的立方相纳米结构,已被证明具有包封和输送亲水性和疏水性有效载荷的多功能性。因此,MNS 嵌入的 BCN(MBCN)通过闪蒸纳米沉淀技术共加载物理化学性质不同的分子有效载荷,并在静脉给药后对其结构和体内分布进行了表征。使用低温透射电子显微镜和小角 X 射线散射分别验证了 MBCN 内部水通道和立方结构的保留。与游离 MNS 相比,MBCN 表现出更好的磁共振成像(MRI)对比增强(弛豫率),结合扫描透射电子显微镜和能谱分析证明了 MNS 封装后的团聚和持续接触水。此外,MBCN 被发现是非细胞毒性的,并能够在体外和体内输送其亲水性和疏水性小分子有效载荷。最后,疏水性 PPS 嵌段的氧化敏感性允许 MBCN 发生独特的、可触发的形态转变,形成具有 MNS 的胶束纳米载体。总之,MBCN 是一种有吸引力的平台,可用于输送分子和纳米级有效载荷,用于各种按需和持续药物输送应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验