Suppr超能文献

仿生六轴机器人复制人类心肌乳头肌运动:开创下一代生物力学心脏模拟器技术。

Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology.

机构信息

Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.

Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.

出版信息

J R Soc Interface. 2020 Dec;17(173):20200614. doi: 10.1098/rsif.2020.0614. Epub 2020 Dec 2.

Abstract

Papillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair. However, without the inclusion of papillary muscle motion, current simulators are limited in their ability to accurately replicate cardiac biomechanics. We developed and implemented image-guided papillary muscle (IPM) robots to mimic the precise motion of papillary muscles. The IPM robotic system was designed with six degrees of freedom to fully capture the native motion. Mathematical analysis was used to avoid singularity conditions, and a supercomputing cluster enabled the calculation of the system's reachable workspace. The IPM robots were implemented in our heart simulator with motion prescribed by high-resolution human computed tomography images, revealing that papillary muscle motion significantly impacts the chordae force profile. Our IPM robotic system represents a significant advancement for simulation, enabling more reliable cardiac simulations and repair optimizations.

摘要

乳头肌作为腱索的附着点,用于固定和定位二尖瓣瓣叶以实现正确的对合。当心室收缩时,乳头肌发生平移和旋转,影响腱索和瓣叶的运动学;这种运动在患病心脏中可能会受到显著影响。在心脏模拟中,离体瓣膜会受到生理条件的影响,并可以适应模拟疾病状态,因此为定量分析生物力学和优化瓣膜修复提供了有价值的工具。然而,如果不包括乳头肌运动,当前的模拟器在准确复制心脏生物力学方面的能力就会受到限制。我们开发并实现了基于图像引导的乳头肌(IPM)机器人,以模拟乳头肌的精确运动。IPM 机器人系统具有六个自由度,可完全捕捉到原生运动。数学分析用于避免奇异条件,超级计算集群则可以计算系统的可达工作空间。我们在心脏模拟器中实现了 IPM 机器人,通过高分辨率的人体计算机断层扫描图像来规定运动,结果表明乳头肌运动对腱索力的分布有显著影响。我们的 IPM 机器人系统代表了心脏模拟的重大进展,使心脏模拟和修复优化更加可靠。

相似文献

2
Ideal site for ventricular anchoring of artificial chordae in mitral regurgitation.
J Thorac Cardiovasc Surg. 2012 Apr;143(4 Suppl):S78-81. doi: 10.1016/j.jtcvs.2011.09.031. Epub 2011 Oct 27.
3
Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.
Cardiovasc Eng Technol. 2017 Mar;8(1):3-16. doi: 10.1007/s13239-016-0291-9. Epub 2017 Jan 9.
4
Mechanical and morphometric study of mitral valve chordae tendineae and related papillary muscle.
J Mech Behav Biomed Mater. 2020 Nov;111:104011. doi: 10.1016/j.jmbbm.2020.104011. Epub 2020 Jul 30.
5
Biomechanical analysis of neochordal repair error from diastolic phase inversion of static left ventricular pressurization.
JTCVS Tech. 2022 Jan 26;12:54-64. doi: 10.1016/j.xjtc.2022.01.009. eCollection 2022 Apr.
6
Characteristics and treatment strategies of mitral regurgitation associated with undifferentiated papillary muscle.
Gen Thorac Cardiovasc Surg. 2012 Jul;60(7):406-10. doi: 10.1007/s11748-012-0055-x. Epub 2012 May 11.
7
Artificial chordae.
Semin Thorac Cardiovasc Surg. 2004 Summer;16(2):161-8. doi: 10.1053/j.semtcvs.2004.03.004.
8
Effect of papillary muscle position on mitral valve function: relationship to homografts.
Ann Thorac Surg. 1998 Dec;66(6 Suppl):S155-61. doi: 10.1016/s0003-4975(98)01100-x.
9
Ex Vivo Biomechanical Study of Apical Versus Papillary Neochord Anchoring for Mitral Regurgitation.
Ann Thorac Surg. 2019 Jul;108(1):90-97. doi: 10.1016/j.athoracsur.2019.01.053. Epub 2019 Mar 2.
10
Mitral Valve Posterior Leaflet Reconstruction Using Extracellular Matrix: In Vitro Evaluation.
Cardiovasc Eng Technol. 2020 Aug;11(4):405-415. doi: 10.1007/s13239-020-00472-0. Epub 2020 Jun 26.

引用本文的文献

1
Design and evaluation of valve interventions using ex vivo biomechanical modeling: the Stanford experience.
Gen Thorac Cardiovasc Surg. 2025 Jun;73(6):375-384. doi: 10.1007/s11748-025-02127-0. Epub 2025 Mar 27.
2
Biorobotic hybrid heart as a benchtop cardiac mitral valve simulator.
Device. 2024 Jan 19;2(1). doi: 10.1016/j.device.2023.100217. Epub 2024 Jan 10.
4
Neochordal Goldilocks: Analyzing the biomechanics of neochord length on papillary muscle forces suggests higher tolerance to shorter neochordae.
J Thorac Cardiovasc Surg. 2024 Apr;167(4):e78-e89. doi: 10.1016/j.jtcvs.2023.04.026. Epub 2023 May 7.
5
Native and Post-Repair Residual Mitral Valve Prolapse Increases Forces Exerted on the Papillary Muscles: A Possible Mechanism for Localized Fibrosis?
Circ Cardiovasc Interv. 2022 Dec;15(12):e011928. doi: 10.1161/CIRCINTERVENTIONS.122.011928. Epub 2022 Dec 20.
6
The Critical Biomechanics of Aortomitral Angle and Systolic Anterior Motion: Engineering Native Ex Vivo Simulation.
Ann Biomed Eng. 2023 Apr;51(4):794-805. doi: 10.1007/s10439-022-03091-z. Epub 2022 Oct 20.
7
A Novel Rheumatic Mitral Valve Disease Model with Ex Vivo Hemodynamic and Biomechanical Validation.
Cardiovasc Eng Technol. 2023 Feb;14(1):129-140. doi: 10.1007/s13239-022-00641-3. Epub 2022 Aug 8.
8
Effects of MitraClip Therapy on Mitral Flow Patterns and Vortex Formation: An In Vitro Study.
Ann Biomed Eng. 2022 Jun;50(6):680-690. doi: 10.1007/s10439-022-02944-x. Epub 2022 Apr 11.
9
Biomechanical analysis of neochordal repair error from diastolic phase inversion of static left ventricular pressurization.
JTCVS Tech. 2022 Jan 26;12:54-64. doi: 10.1016/j.xjtc.2022.01.009. eCollection 2022 Apr.

本文引用的文献

1
Soft robotic ventricular assist device with septal bracing for therapy of heart failure.
Sci Robot. 2017 Nov 22;2(12). doi: 10.1126/scirobotics.aan6736.
4
A novel cross-species model of Barlow's disease to biomechanically analyze repair techniques in an ex vivo left heart simulator.
J Thorac Cardiovasc Surg. 2021 May;161(5):1776-1783. doi: 10.1016/j.jtcvs.2020.01.086. Epub 2020 Feb 19.
8
Ex Vivo Biomechanical Study of Apical Versus Papillary Neochord Anchoring for Mitral Regurgitation.
Ann Thorac Surg. 2019 Jul;108(1):90-97. doi: 10.1016/j.athoracsur.2019.01.053. Epub 2019 Mar 2.
9
Modeling conduit choice for valve-sparing aortic root replacement on biomechanics with a 3-dimensional-printed heart simulator.
J Thorac Cardiovasc Surg. 2019 Aug;158(2):392-403. doi: 10.1016/j.jtcvs.2018.10.145. Epub 2018 Nov 15.
10
Surgical treatment of secondary mitral regurgitation: is repair a reasonable option?
J Vis Surg. 2017 Nov 7;3:158. doi: 10.21037/jovs.2017.09.09. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验