Suppr超能文献

山竹果皮中二苯甲酮合酶的晶体结构揭示了底物特异性和催化的基础。

The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis.

机构信息

Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand.

Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittrapap Road, Khon Kaen 40002, Thailand.

出版信息

Acta Crystallogr F Struct Biol Commun. 2020 Dec 1;76(Pt 12):597-603. doi: 10.1107/S2053230X20014818. Epub 2020 Nov 25.

Abstract

Benzophenone synthase (BPS) catalyzes the production of 2,4,6-trihydroxybenzophenone via the condensation of benzoyl-CoA and three units of malonyl-CoA. The biosynthetic pathway proceeds with the formation of the prenylated xanthone α-mangostin from 2,4,6-trihydroxybenzophenone. Structural elucidation was performed to gain a better understanding of the structural basis of the function of Garcinia mangostana L. (mangosteen) BPS (GmBPS). The structure reveals the common core consisting of a five-layer αβαβα fold as found in other type III polyketide synthase enzymes. The three residues Met264, Tyr266 and Gly339 are proposed to have a significant impact on the substrate-binding specificity of the active site. Crystallographic and docking studies indicate why benzoyl-CoA is preferred over 4-coumaroyl-CoA as the substrate for GmBPS. Met264 and Tyr266 in GmBPS are properly oriented for accommodation of the 2,4,6-trihydroxybenzophenone product but not of naringenin. Gly339 offers a minimal steric hindrance to accommodate the extended substrate. Moreover, the structural arrangement of Thr133 provides the elongation activity and consequently facilitates extension of the polyketide chain. In addition to its impact on the substrate selectivity, Ala257 expands the horizontal cavity and might serve to facilitate the initiation/cyclization reaction. The detailed structure of GmBPS explains its catalytic function, facilitating further structure-based engineering to alter its substrate specificity and obtain the desired products.

摘要

二苯甲酮合酶 (BPS) 通过催化苯甲酰辅酶 A 和三个丙二酰辅酶 A 单元缩合生成 2,4,6-三羟基二苯甲酮,从而合成 2,4,6-三羟基二苯甲酮生成前香叶基黄烷酮 α-倒捻子素。结构解析可以更好地理解藤黄科植物 Garcinia mangostana L. (山竹) BPS (GmBPS) 的功能结构基础。该结构揭示了共同的核心结构,包括其他类型 III 聚酮合酶中发现的五层层叠的 αβαβα 折叠。提出三个残基 Met264、Tyr266 和 Gly339 对活性位点的底物结合特异性有重大影响。晶体学和对接研究表明为什么苯甲酰辅酶 A 比 4-香豆酰辅酶 A 更适合作为 GmBPS 的底物。GmBPS 中的 Met264 和 Tyr266 适当定向以容纳 2,4,6-三羟基二苯甲酮产物,但不容纳柚皮素。Gly339 提供最小的空间位阻以容纳扩展的底物。此外,Thr133 的结构排列提供了伸长活性,从而促进了聚酮链的延伸。除了对底物选择性的影响外,Ala257 扩展了水平腔并可能有助于起始/环化反应。GmBPS 的详细结构解释了其催化功能,为进一步基于结构的工程改造提供了便利,可以改变其底物特异性并获得所需的产物。

相似文献

1
The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis.
Acta Crystallogr F Struct Biol Commun. 2020 Dec 1;76(Pt 12):597-603. doi: 10.1107/S2053230X20014818. Epub 2020 Nov 25.
2
Benzophenone synthase from Garcinia mangostana L. pericarps.
Phytochemistry. 2012 May;77:60-9. doi: 10.1016/j.phytochem.2012.02.002. Epub 2012 Mar 3.
3
A single amino acid substitution converts benzophenone synthase into phenylpyrone synthase.
J Biol Chem. 2009 Nov 6;284(45):30957-64. doi: 10.1074/jbc.M109.038927. Epub 2009 Aug 26.
5
Molecular architectures of benzoic acid-specific type III polyketide synthases.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):1007-1019. doi: 10.1107/S2059798317016618. Epub 2017 Nov 30.
6
Biotransformation of Benzoate to 2,4,6-Trihydroxybenzophenone by Engineered .
Molecules. 2021 May 8;26(9):2779. doi: 10.3390/molecules26092779.
7
Alternative pathways of xanthone biosynthesis in cell cultures of Hypericum androsaemum L.
FEBS Lett. 1997 Dec 29;420(2-3):143-6. doi: 10.1016/s0014-5793(97)01507-x.
10
Structural and biochemical elucidation of mechanism for decarboxylative condensation of beta-keto acid by curcumin synthase.
J Biol Chem. 2011 Feb 25;286(8):6659-68. doi: 10.1074/jbc.M110.196279. Epub 2010 Dec 9.

引用本文的文献

1
Hypoglycemic activity of L. extracts on diabetes rodent models: A systematic review and network meta-analysis.
Front Pharmacol. 2024 Oct 2;15:1472419. doi: 10.3389/fphar.2024.1472419. eCollection 2024.
3
Xanthone Biosynthetic Pathway in Plants: A Review.
Front Plant Sci. 2022 Apr 8;13:809497. doi: 10.3389/fpls.2022.809497. eCollection 2022.

本文引用的文献

1
How structural subtleties lead to molecular diversity for the type III polyketide synthases.
J Biol Chem. 2019 Oct 11;294(41):15121-15136. doi: 10.1074/jbc.REV119.006129. Epub 2019 Aug 30.
2
Molecular architectures of benzoic acid-specific type III polyketide synthases.
Acta Crystallogr D Struct Biol. 2017 Dec 1;73(Pt 12):1007-1019. doi: 10.1107/S2059798317016618. Epub 2017 Nov 30.
3
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
4
Deciphering key features in protein structures with the new ENDscript server.
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4. doi: 10.1093/nar/gku316. Epub 2014 Apr 21.
6
Benzophenone synthase from Garcinia mangostana L. pericarps.
Phytochemistry. 2012 May;77:60-9. doi: 10.1016/j.phytochem.2012.02.002. Epub 2012 Mar 3.
7
Novel applications of plant polyketide synthases.
Curr Opin Chem Biol. 2012 Apr;16(1-2):179-85. doi: 10.1016/j.cbpa.2011.12.016. Epub 2012 Jan 13.
8
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
9
Overview of the CCP4 suite and current developments.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. doi: 10.1107/S0907444910045749. Epub 2011 Mar 18.
10
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验