Suppr超能文献

两种固氮菌 III 型聚酮合酶环化特异性的结构基础:单个氨基酸取代可逆转其环化特异性。

Structural basis for cyclization specificity of two Azotobacter type III polyketide synthases: a single amino acid substitution reverses their cyclization specificity.

机构信息

Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

出版信息

J Biol Chem. 2013 Nov 22;288(47):34146-34157. doi: 10.1074/jbc.M113.487272. Epub 2013 Oct 7.

Abstract

Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.

摘要

III 型聚酮合酶(PKS)表现出多样化的环化特异性。我们之前曾对两种固氮菌 III 型 PKS(ArsB 和 ArsC)进行了特征描述,它们具有不同的环化特异性。ArsB 和 ArsC 具有高度的序列同一性(71%),分别通过相同的聚酮亚甲基中间体的醛醇缩合和内酯化反应生成烷基间苯二酚和烷基吡喃酮。在此,我们通过定点突变确定了每种酶环化特异性的关键氨基酸残基。ArsB 中的色氨酸 281 与 ArsC 中的甘氨酸 284 在氨基酸序列比对中相对应。ArsB W281G 突变体合成了烷基吡喃酮但不合成烷基间苯二酚。相比之下,ArsC G284W 突变体合成了少量烷基吡喃酮的烷基间苯二酚。这些结果表明,该氨基酸残基(ArsB 的色氨酸 281 或 ArsC 的甘氨酸 284)应占据每种酶环化特异性的关键位置。然后,我们分别以 1.76 和 1.99 Å 的分辨率确定了野生型和 G284W ArsC 蛋白的晶体结构。比较这两种 ArsC 结构表明,G284W 取代会在活性位点腔中形成一个空间障碍,导致腔体积显著减小。我们推测只有在 ArsC G284W(可能还有 ArsB)相对较窄的腔中,聚酮亚甲基中间体才能折叠成适合醛醇缩合的形式。这是首次报道 III 型 PKS 从内酯化到醛醇缩合的环化特异性改变。ArsC G284W 结构具有重要意义,因为它是首次报道的微生物间苯二酚合酶结构。

相似文献

2
Phenolic lipid synthesis by type III polyketide synthases is essential for cyst formation in Azotobacter vinelandii.
Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6356-61. doi: 10.1073/pnas.0511227103. Epub 2006 Apr 5.
5
Direct transfer of starter substrates from type I fatty acid synthase to type III polyketide synthases in phenolic lipid synthesis.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):871-6. doi: 10.1073/pnas.0709819105. Epub 2008 Jan 16.
8
Structural and biochemical characterization of ZhuI aromatase/cyclase from the R1128 polyketide pathway.
Biochemistry. 2011 Oct 4;50(39):8392-406. doi: 10.1021/bi200593m. Epub 2011 Sep 8.
9
[Advances in structure-function relation of plant type Ⅲ polyketide synthases by site-directed mutagenesis].
Sheng Wu Gong Cheng Xue Bao. 2018 Apr 25;34(4):473-488. doi: 10.13345/j.cjb.170293.
10
Structural Basis of Polyketide Synthase O-Methylation.
ACS Chem Biol. 2018 Dec 21;13(12):3221-3228. doi: 10.1021/acschembio.8b00687. Epub 2018 Dec 3.

引用本文的文献

2
Structural and mechanistic insights into Quinolone Synthase to address its functional promiscuity.
Commun Biol. 2024 May 14;7(1):566. doi: 10.1038/s42003-024-06152-2.
3
Respiratory Quinone Switches from Menaquinone to Polyketide Quinone during the Development Cycle in sp. Strain MNU77.
Microbiol Spectr. 2023 Feb 14;11(1):e0259722. doi: 10.1128/spectrum.02597-22. Epub 2022 Dec 12.
4
A Type III Polyketide Synthase Specific for Sporulating Negativicutes is Responsible for Alkylpyrone Biosynthesis.
Chembiochem. 2022 Nov 4;23(21):e202200431. doi: 10.1002/cbic.202200431. Epub 2022 Sep 26.
5
Enzymatic assembly of the salinosporamide γ-lactam-β-lactone anticancer warhead.
Nat Chem Biol. 2022 May;18(5):538-546. doi: 10.1038/s41589-022-00993-w. Epub 2022 Mar 21.
7
The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis.
Acta Crystallogr F Struct Biol Commun. 2020 Dec 1;76(Pt 12):597-603. doi: 10.1107/S2053230X20014818. Epub 2020 Nov 25.
8
Characterization of an Orphan Type III Polyketide Synthase Conserved in Uncultivated "Entotheonella" Sponge Symbionts.
Chembiochem. 2020 Feb 17;21(4):564-571. doi: 10.1002/cbic.201900352. Epub 2019 Oct 22.
9
Genome mining reveals uncommon alkylpyrones as type III PKS products from myxobacteria.
J Ind Microbiol Biotechnol. 2019 Mar;46(3-4):319-334. doi: 10.1007/s10295-018-2105-6. Epub 2018 Dec 1.
10
New Insights on Cyclization Specificity of Fungal Type III Polyketide Synthase, PKSIII in .
Indian J Microbiol. 2018 Sep;58(3):268-277. doi: 10.1007/s12088-018-0738-9. Epub 2018 May 12.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase.
Chembiochem. 2011 Sep 19;12(14):2166-76. doi: 10.1002/cbic.201100344. Epub 2011 Aug 4.
4
5
Structure-based engineering of benzalacetone synthase.
Bioorg Med Chem Lett. 2010 Sep 1;20(17):5099-103. doi: 10.1016/j.bmcl.2010.07.022. Epub 2010 Jul 11.
6
Alkylresorcylic acid synthesis by type III polyketide synthases from rice Oryza sativa.
Phytochemistry. 2010 Jul;71(10):1059-67. doi: 10.1016/j.phytochem.2010.02.012. Epub 2010 May 5.
7
Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis.
J Bacteriol. 2009 Aug;191(15):4916-23. doi: 10.1128/JB.00407-09. Epub 2009 May 22.
8
9
Structural insights into biosynthesis of resorcinolic lipids by a type III polyketide synthase in Neurospora crassa.
J Struct Biol. 2008 Jun;162(3):411-21. doi: 10.1016/j.jsb.2008.02.009. Epub 2008 Mar 30.
10
Phenolic lipids synthesized by type III polyketide synthase confer penicillin resistance on Streptomyces griseus.
J Biol Chem. 2008 May 16;283(20):13983-91. doi: 10.1074/jbc.M710461200. Epub 2008 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验