Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
J Biol Chem. 2013 Nov 22;288(47):34146-34157. doi: 10.1074/jbc.M113.487272. Epub 2013 Oct 7.
Type III polyketide synthases (PKSs) show diverse cyclization specificity. We previously characterized two Azotobacter type III PKSs (ArsB and ArsC) with different cyclization specificity. ArsB and ArsC, which share a high sequence identity (71%), produce alkylresorcinols and alkylpyrones through aldol condensation and lactonization of the same polyketomethylene intermediate, respectively. Here we identified a key amino acid residue for the cyclization specificity of each enzyme by site-directed mutagenesis. Trp-281 of ArsB corresponded to Gly-284 of ArsC in the amino acid sequence alignment. The ArsB W281G mutant synthesized alkylpyrone but not alkylresorcinol. In contrast, the ArsC G284W mutant synthesized alkylresorcinol with a small amount of alkylpyrone. These results indicate that this amino acid residue (Trp-281 of ArsB or Gly-284 of ArsC) should occupy a critical position for the cyclization specificity of each enzyme. We then determined crystal structures of the wild-type and G284W ArsC proteins at resolutions of 1.76 and 1.99 Å, respectively. Comparison of these two ArsC structures indicates that the G284W substitution brings a steric wall to the active site cavity, resulting in a significant reduction of the cavity volume. We postulate that the polyketomethylene intermediate can be folded to a suitable form for aldol condensation only in such a relatively narrow cavity of ArsC G284W (and presumably ArsB). This is the first report on the alteration of cyclization specificity from lactonization to aldol condensation for a type III PKS. The ArsC G284W structure is significant as it is the first reported structure of a microbial resorcinol synthase.
III 型聚酮合酶(PKS)表现出多样化的环化特异性。我们之前曾对两种固氮菌 III 型 PKS(ArsB 和 ArsC)进行了特征描述,它们具有不同的环化特异性。ArsB 和 ArsC 具有高度的序列同一性(71%),分别通过相同的聚酮亚甲基中间体的醛醇缩合和内酯化反应生成烷基间苯二酚和烷基吡喃酮。在此,我们通过定点突变确定了每种酶环化特异性的关键氨基酸残基。ArsB 中的色氨酸 281 与 ArsC 中的甘氨酸 284 在氨基酸序列比对中相对应。ArsB W281G 突变体合成了烷基吡喃酮但不合成烷基间苯二酚。相比之下,ArsC G284W 突变体合成了少量烷基吡喃酮的烷基间苯二酚。这些结果表明,该氨基酸残基(ArsB 的色氨酸 281 或 ArsC 的甘氨酸 284)应占据每种酶环化特异性的关键位置。然后,我们分别以 1.76 和 1.99 Å 的分辨率确定了野生型和 G284W ArsC 蛋白的晶体结构。比较这两种 ArsC 结构表明,G284W 取代会在活性位点腔中形成一个空间障碍,导致腔体积显著减小。我们推测只有在 ArsC G284W(可能还有 ArsB)相对较窄的腔中,聚酮亚甲基中间体才能折叠成适合醛醇缩合的形式。这是首次报道 III 型 PKS 从内酯化到醛醇缩合的环化特异性改变。ArsC G284W 结构具有重要意义,因为它是首次报道的微生物间苯二酚合酶结构。