Microbial Energy Conversion and Biotechnology, Department of Biology, Technical University of Darmstadt, Schnittspahnstraße 10, Darmstadt, 64287, Germany.
Department of Chemistry, Macromolecular Chemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, Darmstadt, 64287, Germany.
Environ Microbiol. 2021 Mar;23(3):1407-1421. doi: 10.1111/1462-2920.15344. Epub 2020 Dec 15.
Menaquinone (MK) serves as an essential membranous redox mediator in various electron transport chains of aerobic and anaerobic respiration. In addition, the composition of the quinone/quinol pool has been widely used as a biomarker in microbial taxonomy. The HemN-like class C radical SAM methyltransferases (RSMTs) MqnK, MenK and MenK2 have recently been shown to facilitate specific menaquinone methylation reactions at position C-8 (MqnK/MenK) or C-7 (MenK2) to synthesize 8-methylmenaquinone, 7-methylmenaquinone and 7,8-dimethylmenaquinone. However, the vast majority of protein sequences from the MqnK/MenK/MenK2 family belong to organisms, whose capacity to produce methylated menaquinones has not been investigated biochemically. Here, representative putative menK and menK2 genes from Collinsella tanakaei and Ferrimonas marina were individually expressed in Escherichia coli (wild-type or ubiE deletion mutant) and the corresponding cells were found to produce methylated derivatives of the endogenous MK and 2-demethylmenaquinone. Cluster and phylogenetic analyses of 828 (methyl)menaquinone methyltransferase sequences revealed signature motifs that allowed to discriminate enzymes of the MqnK/MenK/MenK2 family from other radical SAM enzymes and to identify C-7-specific menaquinone methyltransferases of the MenK2 subfamily. This study will help to predict the methylation status of the quinone/quinol pool of a microbial species (or even a microbial community) from its (meta)genome and contribute to the future design of microbial quinone/quinol pools in a Synthetic Biology approach.
甲萘醌 (MK) 作为一种必需的膜氧化还原介体,存在于需氧和厌氧呼吸的各种电子传递链中。此外,醌/氢醌池的组成已被广泛用作微生物分类学的生物标志物。最近发现,HemN 样 C 类自由基 SAM 甲基转移酶 (RSMT) MqnK、MenK 和 MenK2 能够促进特定的甲萘醌甲基化反应,在 C-8 位(MqnK/MenK)或 C-7 位(MenK2)甲基化,合成 8-甲基甲萘醌、7-甲基甲萘醌和 7,8-二甲基甲萘醌。然而,MqnK/MenK/MenK2 家族的绝大多数蛋白质序列来自尚未在生物化学上研究过其产生甲基化甲萘醌能力的生物体。在此,从 Tanakaeibacter tanakaei 和 Ferrimonas marina 中分别表达代表性的假定 menK 和 menK2 基因,在大肠杆菌(野生型或 ubiE 缺失突变体)中表达,发现相应的细胞能够产生内源性 MK 和 2-去甲基甲萘醌的甲基化衍生物。对 828 个(甲基)甲萘醌甲基转移酶序列的聚类和系统发育分析揭示了特征性基序,这些基序允许将 MqnK/MenK/MenK2 家族的酶与其他自由基 SAM 酶区分开来,并鉴定 MenK2 亚家族的 C-7 特异性甲萘醌甲基转移酶。本研究将有助于根据其(宏)基因组预测微生物物种(甚至微生物群落)的醌/氢醌池的甲基化状态,并有助于在合成生物学方法中设计未来的微生物醌/氢醌池。