Mathew Liju G, Brimberry Marley, Lanzilotta William N
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States.
ACS Bio Med Chem Au. 2021 Dec 27;2(2):120-124. doi: 10.1021/acsbiomedchemau.1c00047. eCollection 2022 Apr 20.
Class C radical SAM methyltransferases catalyze a diverse array of difficult chemical transformations in the biosynthesis of a range of compounds of biomedical importance. Phylogenetic analysis suggests that all of these enzymes are related to "CpdH" (formerly "HemN") and "HemW", proteins with essential roles in anaerobic heme biosynthesis and heme transport, respectively. These functions are essential to anaerobic metabolism in . Interestingly, evolution has come full circle, and the divergence of this protein sequence/fold has resulted in the class C radical SAM methyltransferases. Several pathogenic organisms have further adapted this fold to catalyze the anaerobic degradation of heme. In this review, we summarize what is known about the mechanism of anaerobic heme degradation and the evolutionary implications.
C类自由基S-腺苷甲硫氨酸甲基转移酶在一系列具有生物医学重要性的化合物的生物合成中催化各种复杂的化学转化。系统发育分析表明,所有这些酶都与“CpdH”(以前称为“HemN”)和“HemW”相关,它们分别在厌氧血红素生物合成和血红素运输中起关键作用。这些功能对于[具体生物名称]中的厌氧代谢至关重要。有趣的是,进化完成了一个轮回,这种蛋白质序列/折叠的分化产生了C类自由基S-腺苷甲硫氨酸甲基转移酶。几种致病生物进一步利用这种折叠来催化血红素的厌氧降解。在这篇综述中,我们总结了关于厌氧血红素降解机制及其进化意义的已知信息。