Suppr超能文献

C 类自由基 S-腺苷甲硫氨酸甲基转移酶中碳-碳键的形成与断裂。

Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases.

机构信息

Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, United States of America; Department of Chemistry, University of Georgia, Athens, GA 30602, United States of America.

Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, United States of America; Department of Chemistry, University of Georgia, Athens, GA 30602, United States of America.

出版信息

J Inorg Biochem. 2022 Jan;226:111636. doi: 10.1016/j.jinorgbio.2021.111636. Epub 2021 Oct 22.

Abstract

Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S] cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S] cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.

摘要

激进的 S-腺苷甲硫氨酸(SAM)酶利用 [4Fe-4S] 簇和 S-(5'-腺苷基)-L-甲硫氨酸(SAM)生成一个高反应性自由基,并催化可能是任何已知酶家族中最多样化的化学反应。激进的 SAM 催化的核心是通过 SAM 的还原裂解或 [4Fe-4S] 簇的独特铁对 SAM 的 5' C 原子的亲核攻击生成的高反应性 5'-脱氧腺苷自由基中间体(5'-dAdo●)。光谱研究表明,5'-dAdo● 暂时被捕获在 FeC 键(Ω 物种)中。在底物存在下,这种金属-碳键的均裂断裂使 5'-dAdo● 再生,用于催化氢原子的攫取。虽然类似于腺苷钴胺素机制,但激进的 SAM 酶似乎具有更大的催化多样性。在这篇综述中,我们讨论了涉及独特化学重排的激进 SAM 酶的最新进展,特别是关于 C 类激进 SAM 甲基转移酶。阐明这一类激进的 SAM 酶尤为重要,因为许多酶已被证明在发病机制和新型抗菌化合物的合成中起着关键作用。

相似文献

4
Radical-mediated enzymatic methylation: a tale of two SAMS.自由基介导的酶促甲基化:两种 SAMS 的故事。
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.
7
Mechanism of Radical Initiation in the Radical SAM Enzyme Superfamily.自由基 SAM 酶超家族中自由基引发的机制。
Annu Rev Biochem. 2023 Jun 20;92:333-349. doi: 10.1146/annurev-biochem-052621-090638. Epub 2023 Apr 4.
8
Auxiliary iron-sulfur cofactors in radical SAM enzymes.自由基S-腺苷甲硫氨酸酶中的辅助铁硫辅因子。
Biochim Biophys Acta. 2015 Jun;1853(6):1316-34. doi: 10.1016/j.bbamcr.2015.01.002. Epub 2015 Jan 15.

引用本文的文献

1
Functional Diversity of HemN-like Proteins.HemN样蛋白的功能多样性
ACS Bio Med Chem Au. 2022 Jan 18;2(2):109-119. doi: 10.1021/acsbiomedchemau.1c00058. eCollection 2022 Apr 20.
2
Class C Radical SAM Methyltransferases Involved in Anaerobic Heme Degradation.参与厌氧血红素降解的C类自由基S-腺苷甲硫氨酸甲基转移酶
ACS Bio Med Chem Au. 2021 Dec 27;2(2):120-124. doi: 10.1021/acsbiomedchemau.1c00047. eCollection 2022 Apr 20.

本文引用的文献

3
New Insight into the Mechanism of Anaerobic Heme Degradation.关于厌氧血红素降解机制的新见解。
Biochemistry. 2019 Nov 19;58(46):4641-4654. doi: 10.1021/acs.biochem.9b00841. Epub 2019 Nov 7.
4
Radical SAM enzymes: surprises along the path to understanding mechanism.激进的 SAM 酶:在理解机制的道路上的惊喜。
J Biol Inorg Chem. 2019 Sep;24(6):769-776. doi: 10.1007/s00775-019-01706-w. Epub 2019 Sep 7.
6
Revisiting the Mechanism of the Anaerobic Coproporphyrinogen III Oxidase HemN.重新探讨厌氧粪卟啉原氧化酶 HemN 的作用机制。
Angew Chem Int Ed Engl. 2019 May 6;58(19):6235-6238. doi: 10.1002/anie.201814708. Epub 2019 Apr 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验