Giuliani Alessandro, Tsuchiya Masa, Yoshikawa Kenichi
Environment and Health Department, Istituto Superiore di Sanitá, 00161 Rome, Italy.
SEIKO Life Science Laboratory, SRI, Osaka 540-659, Japan.
Entropy (Basel). 2017 Dec 28;20(1):13. doi: 10.3390/e20010013.
A statistical mechanical mean-field approach to the temporal development of biological regulation provides a phenomenological, but basic description of the dynamical behavior of genome expression in terms of autonomous self-organization with a critical transition (Self-Organized Criticality: SOC). This approach reveals the basis of self-regulation/organization of genome expression, where the extreme complexity of living matter precludes any strict mechanistic approach. The self-organization in SOC involves two critical behaviors: scaling-divergent behavior (genome avalanche) and sandpile-type critical behavior. Genome avalanche patterns-competition between order (scaling) and disorder (divergence) reflect the opposite sequence of events characterizing the self-organization process in embryo development and helper T17 terminal cell differentiation, respectively. On the other hand, the temporal development of sandpile-type criticality (the degree of SOC control) in mouse embryo suggests the existence of an SOC control landscape with a critical transition state (i.e., the erasure of zygote-state criticality). This indicates that a phase transition of the mouse genome before and after reprogramming (immediately after the late 2-cell state) occurs through a dynamical change in a control parameter. This result provides a quantitative open-thermodynamic appreciation of the still largely qualitative notion of the epigenetic landscape. Our results suggest: (i) the existence of coherent waves of condensation/de-condensation in chromatin, which are transmitted across regions of different gene-expression levels along the genome; and (ii) essentially the same critical dynamics we observed for cell-differentiation processes exist in overall RNA expression during embryo development, which is particularly relevant because it gives further proof of SOC control of overall expression as a universal feature.
一种用于生物调控时间发展的统计力学平均场方法,从具有临界转变的自主自组织(自组织临界性:SOC)角度,提供了对基因组表达动态行为的唯象但基础的描述。这种方法揭示了基因组表达自我调节/组织的基础,而生命物质的极端复杂性排除了任何严格的机械方法。SOC中的自组织涉及两种临界行为:标度发散行为(基因组雪崩)和沙堆型临界行为。基因组雪崩模式——有序(标度)与无序(发散)之间的竞争,分别反映了胚胎发育和辅助性T17终末细胞分化中自组织过程特征的相反事件序列。另一方面,小鼠胚胎中沙堆型临界性(SOC控制程度)的时间发展表明存在一个具有临界转变状态(即合子状态临界性的消除)的SOC控制景观。这表明小鼠基因组在重编程前后(紧接在晚期2细胞状态之后)的相变是通过控制参数的动态变化发生的。这一结果为表观遗传景观这一仍在很大程度上是定性概念提供了定量的开放热力学理解。我们的结果表明:(i)染色质中存在凝聚/解凝聚的相干波,这些波沿着基因组跨不同基因表达水平的区域传播;(ii)我们在细胞分化过程中观察到的基本相同的临界动力学存在于胚胎发育期间的整体RNA表达中,这一点特别相关,因为它进一步证明了SOC对整体表达的控制是一个普遍特征。