Gay-Balmaz François, Yoshimura Hiroaki
Centre National de la Recherche Scientifique (CNRS), Le Laboratoire de Météorologie Dynamique (LMD), Ecole Normale Supérieure, 75005 Paris, France.
School of Science and Engineering, Waseda University, Tokyo 169-8555, Japan.
Entropy (Basel). 2018 Mar 4;20(3):163. doi: 10.3390/e20030163.
We propose a variational formulation for the nonequilibrium thermodynamics of discrete open systems, i.e., discrete systems which can exchange mass and heat with the exterior. Our approach is based on a general variational formulation for systems with time-dependent nonlinear nonholonomic constraints and time-dependent Lagrangian. For discrete open systems, the time-dependent nonlinear constraint is associated with the rate of internal entropy production of the system. We show that this constraint on the solution curve systematically yields a constraint on the variations to be used in the action functional. The proposed variational formulation is intrinsic and provides the same structure for a wide class of discrete open systems. We illustrate our theory by presenting examples of open systems experiencing mechanical interactions, as well as internal diffusion, internal heat transfer, and their cross-effects. Our approach yields a systematic way to derive the complete evolution equations for the open systems, including the expression of the internal entropy production of the system, independently on its complexity. It might be especially useful for the study of the nonequilibrium thermodynamics of biophysical systems.
我们提出了一种用于离散开放系统非平衡热力学的变分公式,即可以与外部交换质量和热量的离散系统。我们的方法基于具有时间相关非线性非完整约束和时间相关拉格朗日量的系统的一般变分公式。对于离散开放系统,时间相关的非线性约束与系统内部熵产生率相关。我们表明,对解曲线的这种约束系统地产生了对作用泛函中使用的变分的约束。所提出的变分公式是内在的,并且为广泛的离散开放系统提供了相同的结构。我们通过给出经历机械相互作用以及内部扩散、内部热传递及其交叉效应的开放系统的例子来说明我们的理论。我们的方法提供了一种系统的方法来推导开放系统的完整演化方程,包括系统内部熵产生的表达式,而与系统的复杂性无关。它可能对生物物理系统非平衡热力学的研究特别有用。