Wang Jiaxiang, Li Jinshan, Wang Jun, Bu Fan, Kou Hongchao, Li Chao, Zhang Pingxiang, Beaugnon Eric
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China.
Xi'an Superconducting Magnet Technology Co. Ltd., Xi'an 710018, China.
Entropy (Basel). 2018 Apr 12;20(4):275. doi: 10.3390/e20040275.
Strong static magnetic field (SSMF) is a unique way to regulate the microstructure and improve the properties of materials. FeCoNi(AlSi) alloy is a novel class of soft magnetic materials (SMMs) designed based on high-entropy alloy (HEA) concepts. In this study, a strong static magnetic field is introduced to tune the microstructure, mechanical, electrical and magnetic properties of FeCoNi(AlSi) high-entropy alloy. Results indicate that, with the increasing magnetic field intensity, the Vickers hardness and the saturation magnetization (M) increase firstly, and then decrease and reach the maximum at 5T, while the yield strength, the residual magnetization (M) and the coercivity (H) take the opposite trend. The resistivity values () are found to be enhanced by the increasing magnetic field intensity. The main reasons for the magnetic field on the above effects are interpreted by microstructure evolution (phase species and volume fraction), atomic-level structure and defects (vacancy and dislocation density).
强静磁场(SSMF)是调节材料微观结构和改善材料性能的一种独特方式。FeCoNi(AlSi)合金是基于高熵合金(HEA)概念设计的一类新型软磁材料(SMMs)。在本研究中,引入强静磁场来调控FeCoNi(AlSi)高熵合金的微观结构、力学、电学和磁学性能。结果表明,随着磁场强度的增加,维氏硬度和饱和磁化强度(Ms)先增加,然后降低,并在5T时达到最大值,而屈服强度、剩余磁化强度(Mr)和矫顽力(Hc)则呈现相反的趋势。发现电阻率值(ρ)随着磁场强度的增加而增大。磁场对上述效应的主要原因通过微观结构演变(相种类和体积分数)、原子级结构和缺陷(空位和位错密度)来解释。