Max-Planck-Institut für Eisenforschung, Düsseldorf, Germany.
Department of Materials Science, Technical University of Darmstadt, Darmstadt, Germany.
Nature. 2022 Aug;608(7922):310-316. doi: 10.1038/s41586-022-04935-3. Epub 2022 Aug 10.
Soft magnetic materials (SMMs) serve in electrical applications and sustainable energy supply, allowing magnetic flux variation in response to changes in applied magnetic field, at low energy loss. The electrification of transport, households and manufacturing leads to an increase in energy consumption owing to hysteresis losses. Therefore, minimizing coercivity, which scales these losses, is crucial. Yet meeting this target alone is not enough: SMMs in electrical engines must withstand severe mechanical loads; that is, the alloys need high strength and ductility. This is a fundamental design challenge, as most methods that enhance strength introduce stress fields that can pin magnetic domains, thus increasing coercivity and hysteresis losses. Here we introduce an approach to overcome this dilemma. We have designed a Fe-Co-Ni-Ta-Al multicomponent alloy (MCA) with ferromagnetic matrix and paramagnetic coherent nanoparticles (about 91 nm in size and around 55% volume fraction). They impede dislocation motion, enhancing strength and ductility. Their small size, low coherency stress and small magnetostatic energy create an interaction volume below the magnetic domain wall width, leading to minimal domain wall pinning, thus maintaining the soft magnetic properties. The alloy has a tensile strength of 1,336 MPa at 54% tensile elongation, extremely low coercivity of 78 A m (less than 1 Oe), moderate saturation magnetization of 100 A m kg and high electrical resistivity of 103 μΩ cm.
软磁材料(SMMs)在电气应用和可持续能源供应中发挥作用,允许在低能量损耗下响应施加磁场的变化而变化磁通量。由于磁滞损耗,交通、家庭和制造业的电气化导致能源消耗增加。因此,最小化矫顽力(该参数衡量这些损耗)至关重要。然而,仅仅满足这一目标是不够的:电气发动机中的 SMM 必须承受严重的机械负载;也就是说,合金需要高强度和延展性。这是一个基本的设计挑战,因为大多数增强强度的方法都会引入可以钉扎磁畴的应力场,从而增加矫顽力和磁滞损耗。在这里,我们介绍了一种克服这一困境的方法。我们设计了一种具有铁磁性基质和顺磁相干纳米颗粒(约 91nm 大小,约 55%体积分数)的 Fe-Co-Ni-Ta-Al 多组分合金(MCA)。它们阻碍位错运动,提高了强度和延展性。它们的小尺寸、低相干应力和小静磁能在磁畴壁宽度以下产生相互作用体积,导致磁畴壁钉扎最小,从而保持软磁性能。该合金在 54%拉伸伸长率下具有 1336MPa 的拉伸强度、极低的 78A/m(小于 1Oe)矫顽力、适中的饱和磁化强度 100A/m·kg 和 103μΩ·cm 的高电阻率。