Suppr超能文献

最大熵与理论构建:对法弗雷蒂的回应

Maximum Entropy and Theory Construction: A Reply to Favretti.

作者信息

Harte John

机构信息

Energy and Resources Group, and Department of Environmental Science, Policy & Management, University of California at Berkeley, Berkeley, CA 94720, USA.

出版信息

Entropy (Basel). 2018 Apr 14;20(4):285. doi: 10.3390/e20040285.

Abstract

In the maximum entropy theory of ecology (METE), the form of a function describing the distribution of abundances over species and metabolic rates over individuals in an ecosystem is inferred using the maximum entropy inference procedure. Favretti shows that an alternative maximum entropy model exists that assumes the same prior knowledge and makes predictions that differ from METE's. He shows that both cannot be correct and asserts that his is the correct one because it can be derived from a classic microstate-counting calculation. I clarify here exactly what the core entities and definitions are for METE, and discuss the relevance of two critical issues raised by Favretti: the existence of a counting procedure for microstates and the choices of definition of the core elements of a theory. I emphasize that a theorist controls how the core entities of his or her theory are defined, and that nature is the final arbiter of the validity of a theory.

摘要

在生态最大熵理论(METE)中,使用最大熵推理程序来推断描述生态系统中物种丰度分布和个体代谢率分布的函数形式。法弗雷蒂表明,存在另一种最大熵模型,它假设相同的先验知识,但其预测结果与METE不同。他指出这两种模型不可能都正确,并断言他的模型是正确的,因为它可以从经典的微观状态计数计算中推导出来。在此我明确阐述METE的核心实体和定义究竟是什么,并讨论法弗雷蒂提出的两个关键问题的相关性:微观状态计数程序的存在以及理论核心要素定义的选择。我强调,理论家可以控制其理论核心实体的定义方式,而自然是理论有效性的最终评判者。

相似文献

4
Maximum information entropy: a foundation for ecological theory.最大信息熵:生态理论的基础。
Trends Ecol Evol. 2014 Jul;29(7):384-9. doi: 10.1016/j.tree.2014.04.009. Epub 2014 May 23.

本文引用的文献

5
Maximum information entropy: a foundation for ecological theory.最大信息熵:生态理论的基础。
Trends Ecol Evol. 2014 Jul;29(7):384-9. doi: 10.1016/j.tree.2014.04.009. Epub 2014 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验