Tempesta Piergiulio
Departamento de Física Teórica II (Métodos Matemáticos de la Física), Facultad de Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Ciencias Matemáticas, C/ Nicolás Cabrera, No. 13-15, 28049 Madrid, Spain.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the . Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every -entropy is (Tempesta 2016 , 180-197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the -entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.
我们将证明,著名的雷尼熵是一族无穷多个多参数熵中的首个例子。我们将把它们称为 。在适当的假设下,它们中的每一个都推广了著名的玻尔兹曼熵和雷尼熵。一个关键方面是,每个 -熵都是 (Tempesta 2016,180 - 197。(doi:10.1016/j.aop.2015.08.013))。这个性质意味着,由两个或更多独立系统组成的系统的熵,在所有相关的概率空间中,仅取决于这两个系统的选择。还需要其他性质来根据群法则描述组合过程。作为对香农 - 欣钦第四公理(假设可加性)的推广而引入的可组合性公理,是一个非常不平凡的要求。实际上,在迹形式类中,玻尔兹曼熵和Tsallis熵是仅有的已知可组合情形。然而,在非迹形式类中, -熵作为具有经典和量子背景下信息理论应用所需数学性质的新熵函数出现。从数学角度看,可组合性与代数拓扑的形式群论密切相关。潜在的群论结构决定性地决定了相应熵的统计性质。