Suppr超能文献

形式群与 - 熵

Formal groups and -entropies.

作者信息

Tempesta Piergiulio

机构信息

Departamento de Física Teórica II (Métodos Matemáticos de la Física), Facultad de Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain; Instituto de Ciencias Matemáticas, C/ Nicolás Cabrera, No. 13-15, 28049 Madrid, Spain.

出版信息

Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.

Abstract

We shall prove that the celebrated Rényi entropy is the first example of a new family of infinitely many multi-parametric entropies. We shall call them the . Each of them, under suitable hypotheses, generalizes the celebrated entropies of Boltzmann and Rényi. A crucial aspect is that every -entropy is (Tempesta 2016 , 180-197. (doi:10.1016/j.aop.2015.08.013)). This property means that the entropy of a system which is composed of two or more independent systems depends, in all the associated probability space, on the choice of the two systems only. Further properties are also required to describe the composition process in terms of a group law. The composability axiom, introduced as a generalization of the fourth Shannon-Khinchin axiom (postulating additivity), is a highly non-trivial requirement. Indeed, in the trace-form class, the Boltzmann entropy and Tsallis entropy are the only known composable cases. However, in the non-trace form class, the -entropies arise as new entropic functions possessing the mathematical properties necessary for information-theoretical applications, in both classical and quantum contexts. From a mathematical point of view, composability is intimately related to formal group theory of algebraic topology. The underlying group-theoretical structure determines crucially the statistical properties of the corresponding entropies.

摘要

我们将证明,著名的雷尼熵是一族无穷多个多参数熵中的首个例子。我们将把它们称为 。在适当的假设下,它们中的每一个都推广了著名的玻尔兹曼熵和雷尼熵。一个关键方面是,每个 -熵都是 (Tempesta 2016,180 - 197。(doi:10.1016/j.aop.2015.08.013))。这个性质意味着,由两个或更多独立系统组成的系统的熵,在所有相关的概率空间中,仅取决于这两个系统的选择。还需要其他性质来根据群法则描述组合过程。作为对香农 - 欣钦第四公理(假设可加性)的推广而引入的可组合性公理,是一个非常不平凡的要求。实际上,在迹形式类中,玻尔兹曼熵和Tsallis熵是仅有的已知可组合情形。然而,在非迹形式类中, -熵作为具有经典和量子背景下信息理论应用所需数学性质的新熵函数出现。从数学角度看,可组合性与代数拓扑的形式群论密切相关。潜在的群论结构决定性地决定了相应熵的统计性质。

相似文献

1
Formal groups and -entropies.形式群与 - 熵
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160143. doi: 10.1098/rspa.2016.0143.
3
A Brief Review of Generalized Entropies.广义熵简述
Entropy (Basel). 2018 Oct 23;20(11):813. doi: 10.3390/e20110813.
4
Groups, information theory, and Einstein's likelihood principle.群体、信息理论和爱因斯坦的似然原理。
Phys Rev E. 2016 Apr;93:040101. doi: 10.1103/PhysRevE.93.040101. Epub 2016 Apr 6.
6
Generalized entropies and logarithms and their duality relations.广义熵和对数及其对偶关系。
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19151-4. doi: 10.1073/pnas.1216885109. Epub 2012 Nov 5.
7
Group entropies, correlation laws, and zeta functions.群熵、相关定律和黎曼ζ函数。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.

本文引用的文献

1
Group entropies, correlation laws, and zeta functions.群熵、相关定律和黎曼ζ函数。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
2
Observability of Rényi's entropy.雷尼熵的可观测性。
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026128. doi: 10.1103/PhysRevE.69.026128. Epub 2004 Feb 27.
3
Statistical mechanics in the context of special relativity.狭义相对论背景下的统计力学。
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):056125. doi: 10.1103/PhysRevE.66.056125. Epub 2002 Nov 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验