Suppr超能文献

基于密度幂散度的稳健回归:理论、比较与数据分析

Robust Regression with Density Power Divergence: Theory, Comparisons, and Data Analysis.

作者信息

Riani Marco, Atkinson Anthony C, Corbellini Aldo, Perrotta Domenico

机构信息

Dipartimento di Scienze Economiche e Aziendale and Interdepartmental Centre for Robust Statistics, Università di Parma, l43125 Parma, Italy.

The London School of Economics, London WC2A 2AE, UK.

出版信息

Entropy (Basel). 2020 Mar 31;22(4):399. doi: 10.3390/e22040399.

Abstract

Minimum density power divergence estimation provides a general framework for robust statistics, depending on a parameter α , which determines the robustness properties of the method. The usual estimation method is numerical minimization of the power divergence. The paper considers the special case of linear regression. We developed an alternative estimation procedure using the methods of S-estimation. The rho function so obtained is proportional to one minus a suitably scaled normal density raised to the power α . We used the theory of S-estimation to determine the asymptotic efficiency and breakdown point for this new form of S-estimation. Two sets of comparisons were made. In one, S power divergence is compared with other S-estimators using four distinct rho functions. Plots of efficiency against breakdown point show that the properties of S power divergence are close to those of Tukey's biweight. The second set of comparisons is between S power divergence estimation and numerical minimization. Monitoring these two procedures in terms of breakdown point shows that the numerical minimization yields a procedure with larger robust residuals and a lower empirical breakdown point, thus providing an estimate of α leading to more efficient parameter estimates.

摘要

最小密度功率散度估计为稳健统计提供了一个通用框架,它依赖于参数α,该参数决定了该方法的稳健性。通常的估计方法是对功率散度进行数值最小化。本文考虑线性回归的特殊情况。我们使用S估计方法开发了一种替代估计程序。如此得到的ρ函数与1减去适当缩放的正态密度的α次幂成正比。我们利用S估计理论来确定这种新形式的S估计的渐近效率和崩溃点。进行了两组比较。在一组比较中,使用四个不同的ρ函数将S功率散度与其他S估计器进行比较。效率与崩溃点的绘图表明,S功率散度的性质与Tukey双权函数的性质相近。第二组比较是在S功率散度估计和数值最小化之间进行的。从崩溃点的角度监测这两个程序表明,数值最小化产生的程序具有更大的稳健残差和更低的经验崩溃点,从而提供了一个导致更有效参数估计的α估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/694c/7516876/bef1d9f00738/entropy-22-00399-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验