Kauffman Louis H
Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7045, USA.
Department of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk 630090, Russia.
Entropy (Basel). 2018 Jun 21;20(7):483. doi: 10.3390/e20070483.
This paper reviews results about discrete physics and non-commutative worlds and explores further the structure and consequences of constraints linking classical calculus and discrete calculus formulated via commutators. In particular, we review how the formalism of generalized non-commutative electromagnetism follows from a first order constraint and how, via the Kilmister equation, relationships with general relativity follow from a second order constraint. It is remarkable that a second order constraint, based on interlacing the commutative and non-commutative worlds, leads to an equivalent tensor equation at the pole of geodesic coordinates for general relativity.
本文回顾了关于离散物理和非对易世界的结果,并进一步探讨了通过对易子将经典微积分与离散微积分联系起来的约束的结构和后果。特别地,我们回顾了广义非对易电磁学的形式体系如何从一阶约束导出,以及通过基尔米斯特方程,与广义相对论的关系如何从二阶约束导出。值得注意的是,基于对易世界和非对易世界交错的二阶约束,在广义相对论的测地线坐标极点处导致了一个等价的张量方程。