Suppr超能文献

可用于推理的信息度量。

A Measure of Information Available for Inference.

作者信息

Isomura Takuya

机构信息

Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

出版信息

Entropy (Basel). 2018 Jul 7;20(7):512. doi: 10.3390/e20070512.

Abstract

The mutual information between the state of a neural network and the state of the external world represents the amount of information stored in the neural network that is associated with the external world. In contrast, the surprise of the sensory input indicates the unpredictability of the current input. In other words, this is a measure of inference ability, and an upper bound of the surprise is known as the variational free energy. According to the free-energy principle (FEP), a neural network continuously minimizes the free energy to perceive the external world. For the survival of animals, inference ability is considered to be more important than simply memorized information. In this study, the free energy is shown to represent the gap between the amount of information stored in the neural network and that available for inference. This concept involves both the FEP and the infomax principle, and will be a useful measure for quantifying the amount of information available for inference.

摘要

神经网络的状态与外部世界的状态之间的互信息表示存储在神经网络中与外部世界相关联的信息量。相比之下,感官输入的意外程度表明当前输入的不可预测性。换句话说,这是一种推理能力的度量,意外程度的上限被称为变分自由能。根据自由能原理(FEP),神经网络不断最小化自由能以感知外部世界。对于动物的生存而言,推理能力被认为比单纯记忆的信息更为重要。在本研究中,自由能被证明代表了存储在神经网络中的信息量与可用于推理的信息量之间的差距。这一概念涉及自由能原理和信息最大化原理,将成为量化可用于推理的信息量的有用度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da8/7513032/c62e535e7e8a/entropy-20-00512-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验