Suppr超能文献

作为贝叶斯推理过程的广义达尔文主义

Universal Darwinism As a Process of Bayesian Inference.

作者信息

Campbell John O

机构信息

Independent Researcher Victoria, BC, Canada.

出版信息

Front Syst Neurosci. 2016 Jun 7;10:49. doi: 10.3389/fnsys.2016.00049. eCollection 2016.

Abstract

Many of the mathematical frameworks describing natural selection are equivalent to Bayes' Theorem, also known as Bayesian updating. By definition, a process of Bayesian Inference is one which involves a Bayesian update, so we may conclude that these frameworks describe natural selection as a process of Bayesian inference. Thus, natural selection serves as a counter example to a widely-held interpretation that restricts Bayesian Inference to human mental processes (including the endeavors of statisticians). As Bayesian inference can always be cast in terms of (variational) free energy minimization, natural selection can be viewed as comprising two components: a generative model of an "experiment" in the external world environment, and the results of that "experiment" or the "surprise" entailed by predicted and actual outcomes of the "experiment." Minimization of free energy implies that the implicit measure of "surprise" experienced serves to update the generative model in a Bayesian manner. This description closely accords with the mechanisms of generalized Darwinian process proposed both by Dawkins, in terms of replicators and vehicles, and Campbell, in terms of inferential systems. Bayesian inference is an algorithm for the accumulation of evidence-based knowledge. This algorithm is now seen to operate over a wide range of evolutionary processes, including natural selection, the evolution of mental models and cultural evolutionary processes, notably including science itself. The variational principle of free energy minimization may thus serve as a unifying mathematical framework for universal Darwinism, the study of evolutionary processes operating throughout nature.

摘要

许多描述自然选择的数学框架等同于贝叶斯定理,也被称为贝叶斯更新。根据定义,贝叶斯推理过程就是涉及贝叶斯更新的过程,所以我们可以得出结论,这些框架将自然选择描述为一个贝叶斯推理过程。因此,自然选择成为了一个反例,反驳了一种广泛持有的观点,即把贝叶斯推理局限于人类心理过程(包括统计学家的工作)。由于贝叶斯推理总是可以用(变分)自由能量最小化来表述,自然选择可以被视为由两个部分组成:外部世界环境中“实验”的生成模型,以及该“实验”的结果,或者“实验”预测结果与实际结果之间的“意外”。自由能量最小化意味着所经历的“意外”的隐含度量以贝叶斯方式用于更新生成模型。这种描述与道金斯从复制子和载体角度、坎贝尔从推理系统角度提出的广义达尔文过程机制密切相符。贝叶斯推理是一种积累基于证据的知识的算法。现在可以看到,这种算法在广泛的进化过程中起作用,包括自然选择、心理模型的进化和文化进化过程,特别是包括科学本身。因此,自由能量最小化的变分原理可以作为通用达尔文主义的统一数学框架,通用达尔文主义是对贯穿自然界的进化过程的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4154/4894882/bfb8b570c99a/fnsys-10-00049-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验