Suppr超能文献

蒸发和粘性耗散对非线性径向拉伸圆盘上混合纳米流体流动中熵产生的影响

Transpiration and Viscous Dissipation Effects on Entropy Generation in Hybrid Nanofluid Flow over a Nonlinear Radially Stretching Disk.

作者信息

Farooq Umer, Afridi Muhammad Idrees, Qasim Muhammad, Lu D C

机构信息

Department of Mathematics, Faculty of Science, Jiangsu University, Zhenjiang 212013, China.

Department of Mathematics, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 455000, Pakistan.

出版信息

Entropy (Basel). 2018 Sep 4;20(9):668. doi: 10.3390/e20090668.

Abstract

The present research work explores the effects of suction/injection and viscous dissipation on entropy generation in the boundary layer flow of a hybrid nanofluid (Cu-AlO-HO) over a nonlinear radially stretching porous disk. The energy dissipation function is added in the energy equation in order to incorporate the effects of viscous dissipation. The Tiwari and Das model is used in this work. The flow, heat transfer, and entropy generation analysis have been performed using a modified form of the Maxwell Garnett (MG) and Brinkman nanofluid model for effective thermal conductivity and dynamic viscosity, respectively. Suitable transformations are utilized to obtain a set of self-similar ordinary differential equations. Numerical solutions are obtained using shooting and bvp4c Matlab solver. The comparison of solutions shows excellent agreement. To examine the effects of principal flow parameters like suction/injection, the Eckert number, and solid volume fraction, different graphs are plotted and discussed. It is concluded that entropy generation inside the boundary layer of a hybrid nanofluid is high compared to a convectional nanofluid.

摘要

本研究工作探讨了抽吸/注入和粘性耗散对混合纳米流体(Cu - Al₂O₃ - H₂O)在非线性径向拉伸多孔盘边界层流动中熵产生的影响。为了考虑粘性耗散的影响,在能量方程中加入了能量耗散函数。本工作采用了蒂瓦里和达斯模型。分别使用麦克斯韦·加内特(MG)和布林克曼纳米流体模型的修正形式对有效热导率和动力粘度进行了流动、传热和熵产生分析。利用合适的变换得到了一组自相似常微分方程。使用打靶法和Matlab求解器bvp4c获得了数值解。解的比较显示出极好的一致性。为了研究抽吸/注入、埃克特数和固体体积分数等主要流动参数的影响,绘制并讨论了不同的图表。得出的结论是,与传统纳米流体相比,混合纳米流体边界层内的熵产生较高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d73b/7513191/b7b952d0e5e5/entropy-20-00668-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验