Suppr超能文献

等离子体纳米流体杂化超材料:用于红外吸收光谱学和分子定量测量的超灵敏平台。

Plasmonics-Nanofluidics Hydrid Metamaterial: An Ultrasensitive Platform for Infrared Absorption Spectroscopy and Quantitative Measurement of Molecules.

机构信息

Innovative Photon Manipulation Research Team, RIKEN Center for Advanced Photonics , Wako, Saitama 351-0198, Japan.

Metamaterials Laboratory, RIKEN , Wako, Saitama 351-0198, Japan.

出版信息

ACS Nano. 2017 Oct 24;11(10):9780-9788. doi: 10.1021/acsnano.7b02743. Epub 2017 Sep 28.

Abstract

One of the most attractive potentials of plasmonic metamaterials is the amplification of intrinsically weak signals such as molecular infrared absorption or Raman scattering for detection applications. This effect, however, is only effective when target molecules are located at the enhanced electromagnetic field of the plasmonic structures (i.e., hot-spots). It is thus of significance to control the spatial overlapping of molecules and hot-spots, yet it is a long-standing challenge, since it involves the handling of molecules in nanoscale spaces. Here a metamaterial consisting of a nanofluidic channel with a depth of several tens of nanometers sandwiched between plasmonic resonators and a metal film enables the controllable delivery of small molecules into the most enhanced field arising from the quadrupole mode of the structures, forming a plasmon-molecular coupled system. It offers an ultrasensitive platform for detection of IR absorption and molecular sensing. Notably, the precise handling of molecules in a fixed and ultrasmall (10-100 nm) gap also addressed some critical issues in IR spectroscopy such as quantitative measurement and measurement in aqueous solution. Moreover, a drastic change in the reflectance characteristic resulting from the strong coupling between molecules and plasmonic structures indicates that molecules can also be utilized as triggers for actively switching the optical property of metamaterials.

摘要

等离子体超材料最吸引人的潜力之一是增强分子红外吸收或拉曼散射等固有弱信号,用于检测应用。然而,这种效应只有在目标分子位于等离子体结构的增强电磁场(即热点)时才有效。因此,控制分子和热点的空间重叠具有重要意义,但这是一个长期存在的挑战,因为它涉及到在纳米尺度空间中处理分子。在这里,一种由夹在等离子体谐振器和金属膜之间的数十纳米深的纳米流道组成的超材料,能够将小分子可控地输送到结构的四极模式产生的最强场中,形成等离子体-分子耦合系统。它为检测红外吸收和分子传感提供了一个超灵敏的平台。值得注意的是,在固定的超小(10-100nm)间隙中精确地处理分子,也解决了红外光谱学中的一些关键问题,如定量测量和水溶液中的测量。此外,由于分子和等离子体结构之间的强耦合导致的反射率特性的剧烈变化表明,分子也可以用作主动切换超材料光学性质的触发器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验