Suppr超能文献

锁存吸引子网络中的自由回忆标度律和短期记忆效应。

Free recall scaling laws and short-term memory effects in a latching attractor network.

机构信息

Department of Bioengineering, Imperial College London, London SW7 2BX, United Kingdom.

Developmental Dynamics Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2026092118.

Abstract

Despite the complexity of human memory, paradigms like free recall have revealed robust qualitative and quantitative characteristics, such as power laws governing recall capacity. Although abstract random matrix models could explain such laws, the possibility of their implementation in large networks of interacting neurons has so far remained underexplored. We study an attractor network model of long-term memory endowed with firing rate adaptation and global inhibition. Under appropriate conditions, the transitioning behavior of the network from memory to memory is constrained by limit cycles that prevent the network from recalling all memories, with scaling similar to what has been found in experiments. When the model is supplemented with a heteroassociative learning rule, complementing the standard autoassociative learning rule, as well as short-term synaptic facilitation, our model reproduces other key findings in the free recall literature, namely, serial position effects, contiguity and forward asymmetry effects, and the semantic effects found to guide memory recall. The model is consistent with a broad series of manipulations aimed at gaining a better understanding of the variables that affect recall, such as the role of rehearsal, presentation rates, and continuous and/or end-of-list distractor conditions. We predict that recall capacity may be increased with the addition of small amounts of noise, for example, in the form of weak random stimuli during recall. Finally, we predict that, although the statistics of the encoded memories has a strong effect on the recall capacity, the power laws governing recall capacity may still be expected to hold.

摘要

尽管人类记忆的复杂性,自由回忆等范式已经揭示了强大的定性和定量特征,例如支配回忆能力的幂律。尽管抽象的随机矩阵模型可以解释这些规律,但它们在相互作用的神经元大网络中的实现可能性迄今仍未得到充分探索。我们研究了一种具有发放率适应和全局抑制的长时记忆吸引子网络模型。在适当的条件下,网络从记忆到记忆的转变行为受到限制循环的约束,这限制了网络回忆所有记忆的能力,其规模与实验中发现的相似。当模型补充了异联想学习规则,补充了标准的自联想学习规则,以及短期突触易化时,我们的模型再现了自由回忆文献中的其他关键发现,即序列位置效应、连续性和前向不对称效应,以及发现指导记忆回忆的语义效应。该模型与一系列广泛的操作一致,旨在更好地理解影响回忆的变量,例如排练的作用、呈现率以及连续和/或列表末尾分心条件。我们预测,通过添加少量噪声,例如在回忆过程中添加弱随机刺激,可以增加回忆能力。最后,我们预测,尽管编码记忆的统计特性对回忆能力有很强的影响,但仍可能期望回忆能力的幂律成立。

相似文献

1
Free recall scaling laws and short-term memory effects in a latching attractor network.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2026092118.
3
Continuous attractors for dynamic memories.
Elife. 2021 Sep 14;10:e69499. doi: 10.7554/eLife.69499.
4
Reactivation in working memory: an attractor network model of free recall.
PLoS One. 2013 Aug 30;8(8):e73776. doi: 10.1371/journal.pone.0073776. eCollection 2013.
5
Neural Network Model of Memory Retrieval.
Front Comput Neurosci. 2015 Dec 17;9:149. doi: 10.3389/fncom.2015.00149. eCollection 2015.
6
Inhomogeneities in heteroassociative memories with linear learning rules.
Neural Comput. 2008 Feb;20(2):311-44. doi: 10.1162/neco.2007.08-06-301.
7
Memory recall and spike-frequency adaptation.
Phys Rev E. 2016 May;93(5):052307. doi: 10.1103/PhysRevE.93.052307. Epub 2016 May 13.
8
Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations.
Learn Mem. 2007 Nov 14;14(11):795-806. doi: 10.1101/lm.730207. Print 2007 Nov.

引用本文的文献

1
The synaptic correlates of serial position effects in sequential working memory.
Front Comput Neurosci. 2024 Jul 15;18:1430244. doi: 10.3389/fncom.2024.1430244. eCollection 2024.
2
Multistability in neural systems with random cross-connections.
Biol Cybern. 2023 Dec;117(6):485-506. doi: 10.1007/s00422-023-00981-w. Epub 2023 Dec 22.

本文引用的文献

1
Sequential Attractors in Combinatorial Threshold-Linear Networks.
SIAM J Appl Dyn Syst. 2022;21(2):1597-1630. doi: 10.1137/21m1445120.
2
Latching dynamics as a basis for short-term recall.
PLoS Comput Biol. 2021 Sep 15;17(9):e1008809. doi: 10.1371/journal.pcbi.1008809. eCollection 2021 Sep.
3
Professional or Amateur? The Phonological Output Buffer as a Working Memory Operator.
Entropy (Basel). 2020 Jun 15;22(6):662. doi: 10.3390/e22060662.
4
The Capacity for Correlated Semantic Memories in the Cortex.
Entropy (Basel). 2018 Oct 26;20(11):824. doi: 10.3390/e20110824.
5
Fundamental Law of Memory Recall.
Phys Rev Lett. 2020 Jan 10;124(1):018101. doi: 10.1103/PhysRevLett.124.018101.
6
Computational Models of Memory Search.
Annu Rev Psychol. 2020 Jan 4;71:107-138. doi: 10.1146/annurev-psych-010418-103358. Epub 2019 Sep 30.
7
Emergence of hierarchical organization in memory for random material.
Sci Rep. 2019 Jul 18;9(1):10448. doi: 10.1038/s41598-019-46908-z.
8
Benchmarks for models of short-term and working memory.
Psychol Bull. 2018 Sep;144(9):885-958. doi: 10.1037/bul0000153.
9
Memory States and Transitions between Them in Attractor Neural Networks.
Neural Comput. 2017 Oct;29(10):2684-2711. doi: 10.1162/neco_a_00998. Epub 2017 Aug 4.
10
Memory Retrieval from First Principles.
Neuron. 2017 Jun 7;94(5):1027-1032. doi: 10.1016/j.neuron.2017.03.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验