O'Connor Christopher M, Cree George S, McRae Ken
University of Western Ontario, London, Canada.
Cogn Sci. 2009;33(4):665-708. doi: 10.1111/j.1551-6709.2009.01024.x.
The structure of people's conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable
人们对具体名词的概念性知识结构传统上被视为层次结构(柯林斯和奎利恩,1969)。例如,上级概念(蔬菜)被认为比基本层次概念(胡萝卜)处于更高层次。一个具有单层语义特征的基于特征的吸引子网络发展出了基本层次概念和上级概念的表征。网络中没有构建层次结构。在实验和模拟1中,类别(典型性评级)的分级结构由扁平吸引子网络来解释。实验和模拟2表明,与基本层次概念一样,这样的网络预测上级概念(蔬菜<有营养>)的特征验证潜伏期。在实验和模拟3中,该模型解释了关于语义启动中相似性时间动态的反直觉结果。通过在表征、学习和计算方面对两种概念一视同仁,该模型为语义记忆提供了新的见解。