Suppr超能文献

扁平吸引子网络中的概念层次结构:学习与计算的动力学

Conceptual Hierarchies in a Flat Attractor Network: Dynamics of Learning and Computations.

作者信息

O'Connor Christopher M, Cree George S, McRae Ken

机构信息

University of Western Ontario, London, Canada.

出版信息

Cogn Sci. 2009;33(4):665-708. doi: 10.1111/j.1551-6709.2009.01024.x.

Abstract

The structure of people's conceptual knowledge of concrete nouns has traditionally been viewed as hierarchical (Collins & Quillian, 1969). For example, superordinate concepts (vegetable) are assumed to reside at a higher level than basic-level concepts (carrot). A feature-based attractor network with a single layer of semantic features developed representations of both basic-level and superordinate concepts. No hierarchical structure was built into the network. In Experiment and Simulation 1, the graded structure of categories (typicality ratings) is accounted for by the flat attractor-network. Experiment and Simulation 2 show that, as with basic-level concepts, such a network predicts feature verification latencies for superordinate concepts (vegetable ). In Experiment and Simulation 3, counterintuitive results regarding the temporal dynamics of similarity in semantic priming are explained by the model. By treating both types of concepts the same in terms of representation, learning, and computations, the model provides new insights into semantic memory.

摘要

人们对具体名词的概念性知识结构传统上被视为层次结构(柯林斯和奎利恩,1969)。例如,上级概念(蔬菜)被认为比基本层次概念(胡萝卜)处于更高层次。一个具有单层语义特征的基于特征的吸引子网络发展出了基本层次概念和上级概念的表征。网络中没有构建层次结构。在实验和模拟1中,类别(典型性评级)的分级结构由扁平吸引子网络来解释。实验和模拟2表明,与基本层次概念一样,这样的网络预测上级概念(蔬菜<有营养>)的特征验证潜伏期。在实验和模拟3中,该模型解释了关于语义启动中相似性时间动态的反直觉结果。通过在表征、学习和计算方面对两种概念一视同仁,该模型为语义记忆提供了新的见解。

相似文献

1
Conceptual Hierarchies in a Flat Attractor Network: Dynamics of Learning and Computations.
Cogn Sci. 2009;33(4):665-708. doi: 10.1111/j.1551-6709.2009.01024.x.
2
The hierarchical organization of semantic memory: executive function in the processing of superordinate concepts.
Neuroimage. 2012 Jan 16;59(2):1870-8. doi: 10.1016/j.neuroimage.2011.08.072. Epub 2011 Aug 27.
4
Modality-independent encoding of individual concepts in the left parietal cortex.
Neuropsychologia. 2017 Oct;105:39-49. doi: 10.1016/j.neuropsychologia.2017.05.001. Epub 2017 May 3.
5
Emoji-based semantic representations for abstract and concrete concepts.
Cogn Process. 2020 Nov;21(4):615-635. doi: 10.1007/s10339-020-00971-x. Epub 2020 May 7.
6
The hippocampal-entorhinal system represents nested hierarchical relations between words during concept learning.
Hippocampus. 2021 Jun;31(6):557-568. doi: 10.1002/hipo.23320. Epub 2021 Mar 6.
7
Toward a brain-based componential semantic representation.
Cogn Neuropsychol. 2016 May-Jun;33(3-4):130-74. doi: 10.1080/02643294.2016.1147426. Epub 2016 Jun 16.
8
The Representation of Coordinate Relations in Lexical Semantic Memory.
Front Psychol. 2020 Feb 11;11:98. doi: 10.3389/fpsyg.2020.00098. eCollection 2020.
9
Semantic Memory Redux: An Experimental Test of Hierarchical Category Representation.
J Mem Lang. 2012 Nov 1;67(4):521-539. doi: 10.1016/j.jml.2012.07.005.
10
A feature-based neurocomputational model of semantic memory.
Cogn Neurodyn. 2018 Dec;12(6):525-547. doi: 10.1007/s11571-018-9494-0. Epub 2018 Jul 7.

引用本文的文献

1
The primacy of experience in language processing: Semantic priming is driven primarily by experiential similarity.
Neuropsychologia. 2024 Aug 13;201:108939. doi: 10.1016/j.neuropsychologia.2024.108939. Epub 2024 Jun 18.
2
Stimulus-independent neural coding of event semantics: Evidence from cross-sentence fMRI decoding.
Neuroimage. 2021 Aug 1;236:118073. doi: 10.1016/j.neuroimage.2021.118073. Epub 2021 Apr 18.
3
A feature-based neurocomputational model of semantic memory.
Cogn Neurodyn. 2018 Dec;12(6):525-547. doi: 10.1007/s11571-018-9494-0. Epub 2018 Jul 7.
4
The cost of switching between taxonomic and thematic semantics.
Mem Cognit. 2018 Feb;46(2):191-203. doi: 10.3758/s13421-017-0757-5.
5
Taxonomic and thematic semantic systems.
Psychol Bull. 2017 May;143(5):499-520. doi: 10.1037/bul0000092. Epub 2017 Mar 23.
6
Feature Statistics Modulate the Activation of Meaning During Spoken Word Processing.
Cogn Sci. 2016 Mar;40(2):325-50. doi: 10.1111/cogs.12234. Epub 2015 Jun 4.
8
The role of action representations in thematic object relations.
Front Hum Neurosci. 2014 Mar 18;8:140. doi: 10.3389/fnhum.2014.00140. eCollection 2014.
9
The Centre for Speech, Language and the Brain (CSLB) concept property norms.
Behav Res Methods. 2014 Dec;46(4):1119-27. doi: 10.3758/s13428-013-0420-4.
10
Conceptual and linguistic representations of kinds and classes.
Cogn Sci. 2012 Sep-Oct;36(7):1224-50. doi: 10.1111/j.1551-6709.2012.01254.x. Epub 2012 Jun 1.

本文引用的文献

1
Global-Before-Basic Object Categorization in Connectionist Networks and 2-Month-Old Infants.
Infancy. 2000 Jan;1(1):31-46. doi: 10.1207/S15327078IN0101_04. Epub 2000 Jan 1.
2
Graded modality-specific specialisation in semantics: A computational account of optic aphasia.
Cogn Neuropsychol. 2002 Oct 1;19(7):603-39. doi: 10.1080/02643290244000112.
3
Perceptual simulation in conceptual combination: evidence from property generation.
Acta Psychol (Amst). 2009 Oct;132(2):173-89. doi: 10.1016/j.actpsy.2009.02.002. Epub 2009 Mar 18.
4
Gradient calculations for dynamic recurrent neural networks: a survey.
IEEE Trans Neural Netw. 1995;6(5):1212-28. doi: 10.1109/72.410363.
5
Where do you know what you know? The representation of semantic knowledge in the human brain.
Nat Rev Neurosci. 2007 Dec;8(12):976-87. doi: 10.1038/nrn2277.
6
Labels can override perceptual categories in early infancy.
Cognition. 2008 Feb;106(2):665-81. doi: 10.1016/j.cognition.2007.04.003. Epub 2007 May 18.
7
The representation of object concepts in the brain.
Annu Rev Psychol. 2007;58:25-45. doi: 10.1146/annurev.psych.57.102904.190143.
8
Distinctive features hold a privileged status in the computation of word meaning: Implications for theories of semantic memory.
J Exp Psychol Learn Mem Cogn. 2006 Jul;32(4):643-58. doi: 10.1037/0278-7393.32.4.643.
9
Perceptual knowledge retrieval activates sensory brain regions.
J Neurosci. 2006 May 3;26(18):4917-21. doi: 10.1523/JNEUROSCI.5389-05.2006.
10
Semantic feature production norms for a large set of living and nonliving things.
Behav Res Methods. 2005 Nov;37(4):547-59. doi: 10.3758/bf03192726.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验