Department of Electrical Engineering, National Central University, Jhongli 320, Taiwan, ROC.
Comput Med Imaging Graph. 2010 Jun;34(4):251-68. doi: 10.1016/j.compmedimag.2009.11.001. Epub 2009 Dec 30.
Magnetic resonance imaging (MRI) is a valuable instrument in medical science owing to its capabilities in soft tissue characterization and 3D visualization. A potential application of MRI in clinical practice is brain parenchyma classification. This work proposes a novel approach called "Unsupervised Linear Discriminant Analysis (ULDA)" to classify and segment the three major tissues, i.e. gray matter (GM), white matter (WM) and cerebral spinal fluid (CSF), from a multi-spectral MR image of the human brain. The ULDA comprises two processes, namely Target Generation Process (TGP) and Linear Discriminant Analysis (LDA) classification. TGP is a fuzzy-set process that generates a set of potential targets from unknown information, and applies these targets to train the optimal division boundary by LDA, such that three tissues GM, WM and CSF are separated. Finally, two sets of images, namely computer-generated phantom images and real MR images are used in the experiments to evaluate the effectiveness of ULDA. Experiment results reveal that UDLA segments a multi-spectral MR image much more effectively than either FMRIB's Automated Segmentation Tool (FAST) or Fuzzy C-means (FC).
磁共振成像(MRI)是医学科学中的一种有价值的工具,因为它具有软组织特征描述和 3D 可视化的能力。MRI 在临床实践中的一个潜在应用是脑实质分类。这项工作提出了一种称为“无监督线性判别分析(ULDA)”的新方法,用于对人脑的多光谱磁共振图像进行分类和分割,将三种主要组织,即灰质(GM)、白质(WM)和脑脊液(CSF)进行分类。ULDA 包括两个过程,即目标生成过程(TGP)和线性判别分析(LDA)分类。TGP 是一个模糊集过程,从未知信息中生成一组潜在的目标,并应用这些目标通过 LDA 来训练最佳的分割边界,从而将三种组织 GM、WM 和 CSF 分开。最后,使用两组图像,即计算机生成的幻影图像和真实的 MR 图像,来评估 ULDA 的有效性。实验结果表明,与 FMRIB 的自动分割工具(FAST)或模糊 C 均值(FC)相比,ULDA 能更有效地分割多光谱磁共振图像。