Chen Yanguang, Huang Linshan
Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Entropy (Basel). 2018 Dec 19;20(12):991. doi: 10.3390/e20120991.
One type of fractal dimension definition is based on the generalized entropy function. Both entropy and fractal dimensions can be employed to characterize complex spatial systems such as cities and regions. Despite the inherent connection between entropy and fractal dimensions, they have different application scopes and directions in urban studies. This paper focuses on exploring how to convert entropy measurements into fractal dimensions for the spatial analysis of scale-free urban phenomena using the ideas from scaling. Urban systems proved to be random prefractal and multifractal systems. The spatial entropy of fractal cities bears two properties. One is the scale dependence: the entropy values of urban systems always depend on the linear scales of spatial measurement. The other is entropy conservation: different fractal parts bear the same entropy value. Thus, entropy cannot reflect the simple rules of urban processes and the spatial heterogeneity of urban patterns. If we convert the generalized entropies into multifractal spectrums, the problems of scale dependence and entropy homogeneity can be solved to a degree for urban spatial analysis. Especially, the geographical analyses of urban evolution can be simplified. This study may be helpful for students in describing and explaining the spatial complexity of urban evolution.
一种分形维数定义基于广义熵函数。熵和分形维数都可用于表征诸如城市和区域等复杂空间系统。尽管熵和分形维数之间存在内在联系,但它们在城市研究中的应用范围和方向有所不同。本文着重探讨如何利用标度思想将熵测量转换为分形维数,以用于无标度城市现象的空间分析。城市系统被证明是随机预分形和多重分形系统。分形城市的空间熵具有两个特性。一个是尺度依赖性:城市系统的熵值总是依赖于空间测量的线性尺度。另一个是熵守恒:不同的分形部分具有相同的熵值。因此,熵无法反映城市过程的简单规则和城市格局的空间异质性。如果我们将广义熵转换为多重分形谱,对于城市空间分析,尺度依赖性和熵同质性问题在一定程度上可以得到解决。特别是,可以简化城市演化的地理分析。这项研究可能有助于学生描述和解释城市演化的空间复杂性。