Suppr超能文献

城市系统的空间测度:从熵到分形维数

Spatial Measures of Urban Systems: from Entropy to Fractal Dimension.

作者信息

Chen Yanguang, Huang Linshan

机构信息

Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.

出版信息

Entropy (Basel). 2018 Dec 19;20(12):991. doi: 10.3390/e20120991.

Abstract

One type of fractal dimension definition is based on the generalized entropy function. Both entropy and fractal dimensions can be employed to characterize complex spatial systems such as cities and regions. Despite the inherent connection between entropy and fractal dimensions, they have different application scopes and directions in urban studies. This paper focuses on exploring how to convert entropy measurements into fractal dimensions for the spatial analysis of scale-free urban phenomena using the ideas from scaling. Urban systems proved to be random prefractal and multifractal systems. The spatial entropy of fractal cities bears two properties. One is the scale dependence: the entropy values of urban systems always depend on the linear scales of spatial measurement. The other is entropy conservation: different fractal parts bear the same entropy value. Thus, entropy cannot reflect the simple rules of urban processes and the spatial heterogeneity of urban patterns. If we convert the generalized entropies into multifractal spectrums, the problems of scale dependence and entropy homogeneity can be solved to a degree for urban spatial analysis. Especially, the geographical analyses of urban evolution can be simplified. This study may be helpful for students in describing and explaining the spatial complexity of urban evolution.

摘要

一种分形维数定义基于广义熵函数。熵和分形维数都可用于表征诸如城市和区域等复杂空间系统。尽管熵和分形维数之间存在内在联系,但它们在城市研究中的应用范围和方向有所不同。本文着重探讨如何利用标度思想将熵测量转换为分形维数,以用于无标度城市现象的空间分析。城市系统被证明是随机预分形和多重分形系统。分形城市的空间熵具有两个特性。一个是尺度依赖性:城市系统的熵值总是依赖于空间测量的线性尺度。另一个是熵守恒:不同的分形部分具有相同的熵值。因此,熵无法反映城市过程的简单规则和城市格局的空间异质性。如果我们将广义熵转换为多重分形谱,对于城市空间分析,尺度依赖性和熵同质性问题在一定程度上可以得到解决。特别是,可以简化城市演化的地理分析。这项研究可能有助于学生描述和解释城市演化的空间复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d11d/7512591/26588871e918/entropy-20-00991-g001.jpg

相似文献

1
Spatial Measures of Urban Systems: from Entropy to Fractal Dimension.
Entropy (Basel). 2018 Dec 19;20(12):991. doi: 10.3390/e20120991.
2
Fractal Modeling and Fractal Dimension Description of Urban Morphology.
Entropy (Basel). 2020 Aug 30;22(9):961. doi: 10.3390/e22090961.
3
The Solutions to the Uncertainty Problem of Urban Fractal Dimension Calculation.
Entropy (Basel). 2019 Apr 30;21(5):453. doi: 10.3390/e21050453.
4
Multifractal scaling analyses of urban street network structure: The cases of twelve megacities in China.
PLoS One. 2021 Feb 18;16(2):e0246925. doi: 10.1371/journal.pone.0246925. eCollection 2021.
5
Derivation of correlation dimension from spatial autocorrelation functions.
PLoS One. 2024 May 31;19(5):e0303212. doi: 10.1371/journal.pone.0303212. eCollection 2024.
6
An Analysis of the Spatial Development of European Cities Based on Their Geometry and the CORINE Land Cover (CLC) Database.
Int J Environ Res Public Health. 2023 Jan 22;20(3):2049. doi: 10.3390/ijerph20032049.
7
Urban spatial form analysis based on the architectural layout -- Taking Zhengzhou City as an example.
PLoS One. 2022 Dec 9;17(12):e0277169. doi: 10.1371/journal.pone.0277169. eCollection 2022.
9
Multifractal analysis of mass function.
Soft comput. 2023 Jun 1:1-14. doi: 10.1007/s00500-023-08502-4.

引用本文的文献

2
Exploring Spatial Patterns of Interurban Passenger Flows Using Dual Gravity Models.
Entropy (Basel). 2022 Dec 8;24(12):1792. doi: 10.3390/e24121792.
3
Entropy of the Land Parcel Mosaic as a Measure of the Degree of Urbanization.
Entropy (Basel). 2021 Apr 28;23(5):543. doi: 10.3390/e23050543.
4
Coupled Criticality Analysis of Inflation and Unemployment.
Entropy (Basel). 2020 Dec 30;23(1):42. doi: 10.3390/e23010042.
5
Fractal Modeling and Fractal Dimension Description of Urban Morphology.
Entropy (Basel). 2020 Aug 30;22(9):961. doi: 10.3390/e22090961.
6
The Solutions to the Uncertainty Problem of Urban Fractal Dimension Calculation.
Entropy (Basel). 2019 Apr 30;21(5):453. doi: 10.3390/e21050453.
8
Multifractal Properties of BK Channel Currents in Human Glioblastoma Cells.
J Phys Chem B. 2020 Mar 26;124(12):2382-2391. doi: 10.1021/acs.jpcb.0c00397. Epub 2020 Mar 16.

本文引用的文献

1
Entropy, complexity, and spatial information.
J Geogr Syst. 2014;16(4):363-385. doi: 10.1007/s10109-014-0202-2. Epub 2014 Sep 24.
2
Laws of population growth.
Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18702-7. doi: 10.1073/pnas.0807435105. Epub 2008 Nov 24.
3
Functional box-counting and multiple elliptical dimensions in rain.
Science. 1987 Feb 27;235(4792):1036-8. doi: 10.1126/science.235.4792.1036.
4
Direct determination of the f( alpha ) singularity spectrum.
Phys Rev Lett. 1989 Mar 20;62(12):1327-1330. doi: 10.1103/PhysRevLett.62.1327.
5
Direct determination of the f( alpha ) singularity spectrum and its application to fully developed turbulence.
Phys Rev A Gen Phys. 1989 Nov 1;40(9):5284-5294. doi: 10.1103/physreva.40.5284.
6
Scaling properties for the surfaces of fractal and nonfractal objects: An infinite hierarchy of critical exponents.
Phys Rev A Gen Phys. 1986 Oct;34(4):3325-3340. doi: 10.1103/physreva.34.3325.
7
Fractal measures and their singularities: The characterization of strange sets.
Phys Rev A Gen Phys. 1986 Feb;33(2):1141-1151. doi: 10.1103/physreva.33.1141.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验