Borlenghi Simone, Delin Anna
Department of Applied Physics, School of Engineering Science, KTH Royal Institute of Technology, Electrum 229, SE-16440 Kista, Sweden.
Swedish e-Science Research Center (SeRC), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
Entropy (Basel). 2018 Dec 19;20(12):992. doi: 10.3390/e20120992.
We apply the stochastic thermodynamics formalism to describe the dynamics of systems of complex Langevin and Fokker-Planck equations. We provide in particular a simple and general recipe to calculate thermodynamical currents, dissipated and propagating heat for networks of nonlinear oscillators. By using the Hodge decomposition of thermodynamical forces and fluxes, we derive a formula for entropy production that generalises the notion of non-potential forces and makes transparent the breaking of detailed balance and of time reversal symmetry for states arbitrarily far from equilibrium. Our formalism is then applied to describe the off-equilibrium thermodynamics of a few examples, notably a continuum ferromagnet, a network of classical spin-oscillators and the Frenkel-Kontorova model of nano friction.
我们应用随机热力学形式来描述复杂朗之万方程和福克 - 普朗克方程系统的动力学。我们特别提供了一个简单通用的方法,用于计算非线性振荡器网络的热力学电流、耗散热和传播热。通过使用热力学力和通量的霍奇分解,我们推导出一个熵产生公式,该公式推广了非保守力的概念,并使远离平衡态的任意状态下详细平衡和时间反演对称性的破缺变得清晰。然后,我们的形式体系被应用于描述一些例子的非平衡热力学,特别是连续铁磁体、经典自旋振荡器网络以及纳米摩擦的弗伦克尔 - 康托罗娃模型。