Suppr超能文献

基于纸片扩散试验数据的抗活性物质 QSAR 模型

QSAR Models for Active Substances against Using Disk-Diffusion Test Data.

机构信息

Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania.

Department of Pharmaceutical Botany and Cell Biology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, Sector 2, 020956 Bucharest, Romania.

出版信息

Molecules. 2021 Mar 19;26(6):1734. doi: 10.3390/molecules26061734.

Abstract

is a Gram-negative bacillus included among the six "ESKAPE" microbial species with an outstanding ability to "escape" currently used antibiotics and developing new antibiotics against it is of the highest priority. Whereas minimum inhibitory concentration (MIC) values against have been used previously for QSAR model development, disk diffusion results (inhibition zones) have not been apparently used for this purpose in the literature and we decided to explore their use in this sense. We developed multiple QSAR methods using several machine learning algorithms (support vector classifier, K nearest neighbors, random forest classifier, decision tree classifier, AdaBoost classifier, logistic regression and naïve Bayes classifier). We used four sets of molecular descriptors and fingerprints and three different methods of data balancing, together with the "native" data set. In total, 32 models were built for each set of descriptors or fingerprint and balancing method, of which 28 were selected and stacked to create meta-models. In terms of balanced accuracy, the best performance was provided by KNN, logistic regression and decision tree classifier, but the ensemble method had slightly superior results in nested cross-validation.

摘要

是一种革兰氏阴性杆菌,属于“ESKAPE”六种微生物物种之一,具有出色的“逃避”目前使用的抗生素的能力,因此开发针对它的新抗生素是当务之急。虽然先前已经使用最低抑菌浓度 (MIC) 值来开发 QSAR 模型,但在文献中,并未明显使用抑菌圈(抑制区)结果来达到此目的,因此我们决定探索在这方面的应用。我们使用了几种机器学习算法(支持向量分类器、K 最近邻、随机森林分类器、决策树分类器、AdaBoost 分类器、逻辑回归和朴素贝叶斯分类器)开发了多种 QSAR 方法。我们使用了四组分子描述符和指纹以及三种不同的数据平衡方法,以及“原始”数据集。对于每组描述符或指纹和平衡方法,总共为每个数据集构建了 32 个模型,其中选择了 28 个模型并进行堆叠以创建元模型。就平衡准确性而言,KNN、逻辑回归和决策树分类器提供了最佳性能,但集成方法在嵌套交叉验证中略胜一筹。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9fe/8003670/27b8c371c222/molecules-26-01734-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验