Suppr超能文献

使用集成分形维数与核逻辑回归模型评估滑坡易发性

Assessment of Landslide Susceptibility Using Integrated Ensemble Fractal Dimension with Kernel Logistic Regression Model.

作者信息

Zhang Tingyu, Han Ling, Han Jichang, Li Xian, Zhang Heng, Wang Hao

机构信息

School of Earth Science and Resources, Chang'an University, Key Laboratory of Degraded and Unutilized Land Remediation Engineering, Ministry of Land and Resources, Shaanxi Provincial Key Laboratory of Land Rehabilitation, Xi'an 710064, China.

Shaanxi Provincial Land Engineering Construction Group Co. Ltd., Xi'an 710075, China.

出版信息

Entropy (Basel). 2019 Feb 24;21(2):218. doi: 10.3390/e21020218.

Abstract

The main aim of this study was to compare and evaluate the performance of fractal dimension as input data in the landslide susceptibility mapping of the Baota District, Yan'an City, China. First, a total of 632 points, including 316 landslide points and 316 non-landslide points, were located in the landslide inventory map. All points were divided into two parts according to the ratio of 70%:30%, with 70% (442) of the points used as the training dataset to train the models, and the remaining, namely the validation dataset, applied for validation. Second, 13 predisposing factors, including slope aspect, slope angle, altitude, lithology, mean annual precipitation (MAP), distance to rivers, distance to faults, distance to roads, normalized differential vegetation index (NDVI), topographic wetness index (TWI), plan curvature, profile curvature, and terrain roughness index (TRI), were selected. Then, the original numerical data, box-counting dimension, and correlation dimension corresponding to each predisposing factor were calculated to generate the input data and build three classification models, namely the kernel logistic regression model (KLR), kernel logistic regression based on box-counting dimension model (KLR), and the kernel logistic regression based on correlation dimension model (KLR). Next, the statistical indexes and the receiver operating characteristic (ROC) curve were employed to evaluate the models' performance. Finally, the KLR model had the highest area under the curve (AUC) values of 0.8984 and 0.9224, obtained by the training and validation datasets, respectively, indicating that the fractal dimension can be used as the input data for landslide susceptibility mapping with a better effect.

摘要

本研究的主要目的是比较和评估分形维数作为输入数据在中国延安市宝塔区滑坡易发性制图中的性能。首先,在滑坡清单图中确定了总共632个点,包括316个滑坡点和316个非滑坡点。所有点按照70%:30%的比例分为两部分,其中70%(442个)的点用作训练数据集来训练模型,其余的即验证数据集用于验证。其次,选择了13个诱发因素,包括坡向、坡度、海拔、岩性、年平均降水量(MAP)、距河流距离、距断层距离、距道路距离、归一化植被指数(NDVI)、地形湿度指数(TWI)、平面曲率、剖面曲率和地形粗糙度指数(TRI)。然后,计算每个诱发因素对应的原始数值数据、盒维数和关联维数,以生成输入数据并构建三个分类模型,即核逻辑回归模型(KLR)、基于盒维数的核逻辑回归模型(KLR)和基于关联维数的核逻辑回归模型(KLR)。接下来,采用统计指标和接收器操作特征(ROC)曲线来评估模型的性能。最后,KLR模型在训练数据集和验证数据集上分别获得了最高的曲线下面积(AUC)值,分别为0.8984和0.9224,表明分形维数可以作为滑坡易发性制图的输入数据,效果更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a05a/7514699/aeaa626bd622/entropy-21-00218-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验