Suppr超能文献

基于 GIS 的机器学习技术在中国江西省崇仁县进行滑坡敏感性建模。

Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China.

机构信息

College of Geology & Environments, Xi'an University of Science and Technology, Xi'an 710054, China.

Department of Geological Engineering, Chang'an University, Xi'an 710054, China.

出版信息

Sci Total Environ. 2018 Jun 1;626:1121-1135. doi: 10.1016/j.scitotenv.2018.01.124. Epub 2018 Feb 19.

Abstract

The preparation of a landslide susceptibility map is considered to be the first step for landslide hazard mitigation and risk assessment. However, these maps are accepted as end products that can be used for land use planning. The main goal of this study is to assess and compare four advanced machine learning techniques, namely the Bayes' net (BN), radical basis function (RBF) classifier, logistic model tree (LMT), and random forest (RF) models, for landslide susceptibility modelling in Chongren County, China. A total of 222 landslide locations were identified in the study area using historical reports, interpretation of aerial photographs, and extensive field surveys. The landslide inventory data was randomly split into two groups with a ratio of 70/30 for training and validation purposes. Fifteen landslide conditioning factors were prepared for landslide susceptibility modelling. The spatial correlation between landslides and conditioning factors was analyzed using the information gain (IG) method. The BN, RBF classifier, LMT, and RF models were constructed using the training dataset. Finally, the receiver operating characteristic (ROC) and statistical measures, including sensitivity, specificity, and accuracy, were employed to validate and compare the predictive capabilities of the models. Out of the tested models, the RF model had the highest sensitivity, specificity, and accuracy values of 0.787, 0.716, and 0.752, respectively, for the training dataset. Overall, the RF model produced an optimized balance for the training and validation datasets in terms of AUC values and statistical measures. The results of this study also demonstrate the benefit of selecting optimal machine learning techniques with proper conditioning selection methods for landslide susceptibility modelling.

摘要

滑坡易发性图的编制被认为是滑坡灾害减轻和风险评估的第一步。然而,这些地图被认为是可用于土地利用规划的最终产品。本研究的主要目的是评估和比较四种先进的机器学习技术,即贝叶斯网络(BN)、径向基函数(RBF)分类器、逻辑模型树(LMT)和随机森林(RF)模型,用于中国重庆市的滑坡易发性建模。在研究区域中,使用历史报告、航空照片解译和广泛的野外调查确定了 222 个滑坡位置。滑坡清单数据随机分为两组,用于训练和验证的比例为 70/30。准备了 15 个滑坡条件因素进行滑坡易发性建模。使用信息增益(IG)方法分析滑坡与条件因素之间的空间相关性。使用训练数据集构建 BN、RBF 分类器、LMT 和 RF 模型。最后,使用接收者操作特征(ROC)和统计度量(包括敏感性、特异性和准确性)验证和比较模型的预测能力。在所测试的模型中,RF 模型在训练数据集的敏感性、特异性和准确性方面的表现最佳,分别为 0.787、0.716 和 0.752。总体而言,RF 模型在 AUC 值和统计度量方面为训练和验证数据集提供了最佳的优化平衡。本研究的结果还表明,选择具有适当条件选择方法的最佳机器学习技术进行滑坡易发性建模具有益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验