Suppr超能文献

一种基于变分模态分解和基于波动的离散熵的舰船辐射噪声特征提取新技术。

A New Ship-Radiated Noise Feature Extraction Technique Based on Variational Mode Decomposition and Fluctuation-Based Dispersion Entropy.

作者信息

Yang Hong, Zhao Ke, Li Guohui

机构信息

School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China.

出版信息

Entropy (Basel). 2019 Mar 1;21(3):235. doi: 10.3390/e21030235.

Abstract

Sea environment complexity and underwater acoustic channels make it hard to extract features of ship-radiated noise signals. This paper presents a novel feature extraction method using the advantages of variational mode decomposition (VMD), fluctuation-based dispersion entropy (FDE) and self-organizing feature map (SOM). Firstly, VMD decomposition of the original signal is used to get a group of bandwidth-limited intrinsic mode functions (IMFs). Then, the difference between the FDE of each IMF and the original signal is calculated, respectively; the IMF with the smallest difference (SIMF) is selected to calculate the FDE as the feature vector. Finally, the characteristic vectors are sent to the SOM classifier to categorize the original signal. The proposed method is applied to feature extraction of real ship-radiated noise signals. The results show that this method is more precise for ship-radiated noise signals feature extraction.

摘要

海洋环境的复杂性和水下声学信道使得提取舰船辐射噪声信号的特征变得困难。本文提出了一种利用变分模态分解(VMD)、基于波动的散度熵(FDE)和自组织特征映射(SOM)的优势的新型特征提取方法。首先,对原始信号进行VMD分解以获得一组带宽受限的本征模态函数(IMF)。然后,分别计算每个IMF与原始信号的FDE之间的差异;选择差异最小的IMF(SIMF)来计算FDE作为特征向量。最后,将特征向量送入SOM分类器对原始信号进行分类。所提出的方法应用于实际舰船辐射噪声信号的特征提取。结果表明,该方法在舰船辐射噪声信号特征提取方面更为精确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b5c/7514716/cbdd9ff2138b/entropy-21-00235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验