Suppr超能文献

加权排列熵:一种纳入幅度信息的时间序列复杂性度量。

Weighted-permutation entropy: a complexity measure for time series incorporating amplitude information.

作者信息

Fadlallah Bilal, Chen Badong, Keil Andreas, Príncipe José

机构信息

Computational NeuroEngineering Laboratory, Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Feb;87(2):022911. doi: 10.1103/PhysRevE.87.022911. Epub 2013 Feb 20.

Abstract

Permutation entropy (PE) has been recently suggested as a novel measure to characterize the complexity of nonlinear time series. In this paper, we propose a simple method to address some of PE's limitations, mainly its inability to differentiate between distinct patterns of a certain motif and the sensitivity of patterns close to the noise floor. The method relies on the fact that patterns may be too disparate in amplitudes and variances and proceeds by assigning weights for each extracted vector when computing the relative frequencies associated with every motif. Simulations were conducted over synthetic and real data for a weighting scheme inspired by the variance of each pattern. Results show better robustness and stability in the presence of higher levels of noise, in addition to a distinctive ability to extract complexity information from data with spiky features or having abrupt changes in magnitude.

摘要

排列熵(PE)最近被提议作为一种表征非线性时间序列复杂性的新方法。在本文中,我们提出了一种简单的方法来解决PE的一些局限性,主要是它无法区分特定基序的不同模式以及接近噪声底限的模式的敏感性。该方法基于这样一个事实,即模式在幅度和方差上可能差异过大,并通过在计算与每个基序相关的相对频率时为每个提取的向量分配权重来进行。针对受每个模式方差启发的加权方案,对合成数据和真实数据进行了模拟。结果表明,在存在更高水平噪声的情况下,该方法具有更好的鲁棒性和稳定性,此外还具有从具有尖峰特征或幅度突然变化的数据中提取复杂性信息的独特能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验