Suppr超能文献

基于数据驱动的非参数似然函数的参数估计

Parameter Estimation with Data-Driven Nonparametric Likelihood Functions.

作者信息

Jiang Shixiao W, Harlim John

机构信息

Department of Mathematics, the Pennsylvania State University, 109 McAllister Building, University Park, PA 16802-6400, USA.

Department of Meteorology and Atmospheric Science, the Pennsylvania State University, 503 Walker Building, University Park, PA 16802-5013, USA.

出版信息

Entropy (Basel). 2019 Jun 3;21(6):559. doi: 10.3390/e21060559.

Abstract

In this paper, we consider a surrogate modeling approach using a data-driven nonparametric likelihood function constructed on a manifold on which the data lie (or to which they are close). The proposed method represents the likelihood function using a spectral expansion formulation known as the kernel embedding of the conditional distribution. To respect the geometry of the data, we employ this spectral expansion using a set of data-driven basis functions obtained from the diffusion maps algorithm. The theoretical error estimate suggests that the error bound of the approximate data-driven likelihood function is independent of the variance of the basis functions, which allows us to determine the amount of training data for accurate likelihood function estimations. Supporting numerical results to demonstrate the robustness of the data-driven likelihood functions for parameter estimation are given on instructive examples involving stochastic and deterministic differential equations. When the dimension of the data manifold is strictly less than the dimension of the ambient space, we found that the proposed approach (which does not require the knowledge of the data manifold) is superior compared to likelihood functions constructed using standard parametric basis functions defined on the ambient coordinates. In an example where the data manifold is not smooth and unknown, the proposed method is more robust compared to an existing polynomial chaos surrogate model which assumes a parametric likelihood, the non-intrusive spectral projection. In fact, the estimation accuracy is comparable to direct MCMC estimates with only eight likelihood function evaluations that can be done offline as opposed to 4000 sequential function evaluations, whenever direct MCMC can be performed. A robust accurate estimation is also found using a likelihood function trained on statistical averages of the chaotic 40-dimensional Lorenz-96 model on a wide parameter domain.

摘要

在本文中,我们考虑一种替代建模方法,该方法使用基于数据所在(或接近)的流形构建的数据驱动非参数似然函数。所提出的方法使用一种称为条件分布的核嵌入的谱展开公式来表示似然函数。为了尊重数据的几何结构,我们使用从扩散映射算法获得的一组数据驱动基函数来进行这种谱展开。理论误差估计表明,近似数据驱动似然函数的误差界与基函数的方差无关,这使我们能够确定用于准确似然函数估计的训练数据量。在涉及随机和确定性微分方程的有启发性示例上给出了支持性数值结果,以证明数据驱动似然函数在参数估计方面的稳健性。当数据流形的维度严格小于周围空间的维度时,我们发现所提出的方法(不需要数据流形的知识)与使用基于周围坐标定义的标准参数基函数构建的似然函数相比更具优势。在一个数据流形不光滑且未知的示例中,与现有的假设参数似然的多项式混沌替代模型(非侵入式谱投影)相比,所提出的方法更稳健。事实上,在任何可以执行直接马尔可夫链蒙特卡罗(MCMC)的情况下,估计精度与直接MCMC估计相当,只需进行八次似然函数评估(可以离线完成),而不是4000次顺序函数评估。在一个宽参数域上,使用在混沌40维洛伦兹 - 96模型的统计平均值上训练的似然函数也发现了稳健准确的估计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725c/7515048/ec535e390350/entropy-21-00559-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验