Suppr超能文献

采用核方法和谱时间基函数的磁共振引导动态正电子发射断层显像重建

MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions.

作者信息

Novosad Philip, Reader Andrew J

机构信息

McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada.

出版信息

Phys Med Biol. 2016 Jun 21;61(12):4624-44. doi: 10.1088/0031-9155/61/12/4624. Epub 2016 May 26.

Abstract

Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [(18)F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral/kernel model can also be used for effective post-reconstruction denoising, through the use of an EM-like image-space algorithm. Finally, we applied the proposed algorithm to reconstruction of real high-resolution dynamic [(11)C]SCH23390 data, showing promising results.

摘要

动态正电子发射断层扫描(PET)重建技术的最新进展表明,通过将放射性示踪剂的时间模型直接纳入重建算法,可以显著改善终点动力学参数图。在这项工作中,我们开发了一种高度受限的全动态PET重建算法,该算法结合了光谱分析时间基函数和从应用于配准的T1加权磁共振(MR)图像的核方法导出的空间基函数。动态PET图像被建模为空间和时间基函数的线性组合,并且可以使用期望最大化(EM)算法找到系数的最大似然估计。重建后,可以应用使用任何感兴趣的时间模型的动力学拟合。基于BrainWeb T1加权MR体模,我们进行了具有两种噪声水平的逼真的动态[(18)F]FDG模拟研究,并研究了所提出的重建算法的定量性能,将其与仅结合光谱分析时间基函数或仅结合核空间基函数的重建以及传统的与帧无关的重建进行比较。与其他重建算法相比,所提出的算法具有卓越的性能,在重建后的灰质/白质以及配准的MR图像上存在肿瘤时,其在动力学参数图上的空间平均像素级均方根误差有所降低。当在MR图像中看不到肿瘤时,使用所提出算法的重建与使用光谱时间基函数的重建表现相似,并且优于传统的与帧无关的重建以及使用核空间基函数的与帧无关的重建。此外,我们证明了联合光谱/核模型还可以通过使用类似EM的图像空间算法用于有效的重建后去噪。最后,我们将所提出的算法应用于真实高分辨率动态[(11)C]SCH23390数据的重建,显示出有希望的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验