Suppr超能文献

忆阻电路的渐近行为。

Asymptotic Behavior of Memristive Circuits.

作者信息

Caravelli Francesco

机构信息

Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Entropy (Basel). 2019 Aug 13;21(8):789. doi: 10.3390/e21080789.

Abstract

The interest in memristors has risen due to their possible application both as memory units and as computational devices in combination with CMOS. This is in part due to their nonlinear dynamics, and a strong dependence on the circuit topology. We provide evidence that also purely memristive circuits can be employed for computational purposes. In the present paper we show that a polynomial Lyapunov function in the memory parameters exists for the case of DC controlled memristors. Such a Lyapunov function can be asymptotically approximated with binary variables, and mapped to quadratic combinatorial optimization problems. This also shows a direct parallel between memristive circuits and the Hopfield-Little model. In the case of Erdos-Renyi random circuits, we show numerically that the distribution of the matrix elements of the projectors can be roughly approximated with a Gaussian distribution, and that it scales with the inverse square root of the number of elements. This provides an approximated but direct connection with the physics of disordered system and, in particular, of mean field spin glasses. Using this and the fact that the interaction is controlled by a projector operator on the loop space of the circuit. We estimate the number of stationary points of the approximate Lyapunov function and provide a scaling formula as an upper bound in terms of the circuit topology only.

摘要

由于忆阻器既可能作为存储单元,又可能与互补金属氧化物半导体(CMOS)结合用作计算设备,人们对其兴趣与日俱增。这部分归因于它们的非线性动力学以及对电路拓扑的强烈依赖性。我们提供证据表明,纯粹的忆阻电路也可用于计算目的。在本文中,我们表明对于直流控制的忆阻器,在存储参数中存在多项式李雅普诺夫函数。这样的李雅普诺夫函数可以用二元变量进行渐近逼近,并映射到二次组合优化问题。这也显示了忆阻电路与霍普菲尔德 - 利特尔模型之间的直接平行关系。在厄多斯 - 雷尼随机电路的情况下,我们通过数值表明,投影算子矩阵元素的分布可以大致用高斯分布来近似,并且它与元素数量的平方根成反比缩放。这提供了与无序系统物理学,特别是平均场自旋玻璃物理学的近似但直接的联系。利用这一点以及相互作用由电路回路空间上的投影算子控制这一事实,我们估计了近似李雅普诺夫函数的驻点数量,并仅根据电路拓扑提供了一个作为上限的缩放公式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/226a/7515318/bf490dafd1dc/entropy-21-00789-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验