Suppr超能文献

通过集体力场形成辅助的经典隧穿实现全局最小化。

Global minimization via classical tunneling assisted by collective force field formation.

作者信息

Caravelli Francesco, Sheldon Forrest C, Traversa Fabio L

机构信息

Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Sci Adv. 2021 Dec 24;7(52):eabh1542. doi: 10.1126/sciadv.abh1542. Epub 2021 Dec 22.

Abstract

Simple elements interacting in networks can give rise to intricate emergent behaviors. Examples such as synchronization and phase transitions often apply in many contexts, as many different systems may reduce to the same effective model. Here, we demonstrate such a behavior in a model inspired by memristors. When weakly driven, the system is described by movement in an effective potential, but when strongly driven, instabilities cause escapes from local minima, which can be interpreted as an unstable tunneling mechanism. We dub this collective and nonperturbative effect a “Lyapunov force,” which steers the system toward the global minimum of the potential function, even if the full system has a constellation of equilibrium points growing exponentially with the system size. This mechanism is appealing for its physical relevance in nanoscale physics and for its possible applications in optimization, Monte Carlo schemes, and machine learning.

摘要

在网络中相互作用的简单元素能够产生复杂的涌现行为。诸如同步和相变等例子在许多情境中都适用,因为许多不同的系统可能会简化为相同的有效模型。在此,我们在一个受忆阻器启发的模型中展示了这样一种行为。当受到弱驱动时,系统由在有效势中的运动来描述,但当受到强驱动时,不稳定性会导致从局部最小值逃逸,这可被解释为一种不稳定的隧穿机制。我们将这种集体且非微扰的效应称为“李雅普诺夫力”,它能引导系统趋向势函数的全局最小值,即便整个系统具有随着系统规模呈指数增长的一系列平衡点。这种机制因其在纳米尺度物理学中的物理相关性以及在优化、蒙特卡罗方法和机器学习中的可能应用而颇具吸引力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5528/8694608/6a64f9a465cd/sciadv.abh1542-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验